**Supporting Information** 

## Construction of myocardial patch with mesenchymal stem cells and poly (CL-co-TOSUO)/collagen scaffolds for myocardial infarction repair by coaxial electrospinning

Yingwei Wang <sup>a,b</sup>, Zepei Fan<sup>b</sup>, Qi Li <sup>b</sup>, Jianlong Lu<sup>b</sup>, Xiaoying Wang <sup>c</sup>, Jianhua Zhang<sup>a</sup>, <sup>†</sup>, and

Zheng Wu<sup>b,</sup>†

<sup>a.</sup> Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.

<sup>b.</sup> Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, China.

<sup>c.</sup> Department of Department of Biological Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

<sup>†</sup> Corresponding authors: Jianhua Zhang: <u>zhangjh\_jnu@126.com</u>, Zheng Wu: <u>wuzheng@jnu.edu.cn</u>



**Figure S1.** The structure and the molecular characteristics of the elastic PCT from gel permeation chromatography. The composition of PCT shown as Poly ( $CL_{1347}$ -co-TOSUO<sub>224</sub>), a number-average molecular weight ( $M_n$ ) of 19.3 kg/mol, and polydispersity index of 1.63.



**Figure S2.** Time series photographs of the rats' back skin following the subcutaneous transplantation of coaxial electrospun fibrous PCT/collagen scaffolds. At week 1, fibrous membranes were formed on the surface of the nanofiber, and they adhered to the skin. After 3 weeks, the nanofibers were gradually degraded, the fibrous membranes still covered the nanofiber, but it had no adhesion to the skin. After 3 weeks of transplantation, the nanofiber was degraded into small powder debris. The nanofibers were completely degraded, and the tissue was completely recovered at week 5.



**Figure S3.** Representative histopathological images of the rats' skin following the transplantation of coaxial PCT/collagen nanofibers scaffolds. Serious inflammation occurred after the implantation of PCT/collagen nanofibers scaffolds for 1 week, and most inflammatory cells were observed around the implanted nanofibers scaffolds. The inflammatory reaction reduced, and the accumulation layer of inflammatory cells thinned over time. After 3 weeks, the inflammatory response was scarcely observed, and the nanofibers scaffolds were almost degraded. No accumulation of inflammatory cells was observed and the tissue was completely recovered 5 weeks post-transplantation.