Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photo-/piezo-activated ultrathin molybdenum disulfide nanomedicine

for synergistic tumor therapy

Lili Xia,^a Junjie Chen,^b Yujie Xie,^{*,c} Shan Zhang,^{*,d} Weiwei Xia,^{*,b} Wei Feng,^{*,a,c} and Yu Chen,^{a,c,e}

^aSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.

^bCollege of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China.

^cSchool of Medicine, Shanghai University, Shanghai, 200444 P. R. China.

^dDepartment of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 P. R. China.

^eMaterdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.

*Corresponding Authors

E-mail: fengw@shu.edu.cn (W. Feng); wwxia@yzu.edu.cn (W. Xia);

xieyj@ shu.edu.cn (Y. Xie); zsshanshan123@126.com (S. Zhang).

Figure S1. (a) SEM image of bulk MoS_2 (scale bar = 10 µm). (b) Enlarged SEM image of bulk MoS_2 (scale bar = 1 µm).

Figure S2. TEM image of single- or few-layer MoS_2 -PEG nanosheets.

Figure S3. Size distribution of MoS_2 nanosheets before and after LA-PEG modification.

Figure S4. Zeta potentials of MoS_2 nanosheets before and after LA-PEG modification.

Figure S5. Time-dependent DPBF degradation after treatment (a) without and (b) with only MoS_2 -PEG nanosheets.

Figure S6. (a) Time-dependent MB oxidation under only US irradiation (1 MHz, 1 W/cm^2 , 50% duty cycle). (b) Time-dependent MB oxidation after incubated with MoS₂-PEG nanosheets under US irradiation.

Figure S7. Bio-TEM images of 4T1 cells incubated (a) without and (b) with MoS_2 -PEG nanosheets. (scale bars: 2 µm for (a1) and (b1); 1 µm for (a2) and (b2)).

Figure S8. Blood routine and blood biochemical indices after different treatments.

Figure S9. H&E staining of main organs including heart, liver, spleen, lung, and kidney after different treatments.

Figure S10. Digital photos of tumors removed from 4T1-tumor-bearing mice after different treatments on the 14th day.

Materials	Concentrati	Irradiation time	Wavelength	Power	Photothermal
	on (µg/mL)	(s)	(λ, nm)	density	conversion
				(W cm ⁻²)	efficiency (η,
					%)
MoS ₂ -PEG (in	200	600	1064	1.0	22.68%
this work)					
MoS_2 - CS^1	100	600	808	1.0	24.7
PMOs-	1000	300	808	1.0	62.5
DOX@MoS2-					
PEI-BSA-FA ²					
$MoS_2 NPs^3$	100	300	808	1.0	37.5%
MoS ₂ -NF	150	600	808	1.5	13.77%
MoS_2 - NS^4					25.68%
MoS_2^5	600	300	808	0.2	38.3
MoS_2-HPG^6	180	600	808	2.0	29.4%
MoS ₂ @BT-	100	300	808	1.5	35.3%
PDA-FA ⁷					
MoS ₂ -PEG ⁸	200	600	808	1.0	26.7%
Layered	100	300	808	1.0	34.46%
MoS ₂ hollow					
spheres9					

Table S1. The relevant parameters of photothermal conversion efficiency of MoS_2 in previously published papers.

Refences

- 1. W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu and Y. Zhao, *ACS Nano*, 2014, **8**, 6922-6933.
- 2. J. R. Wu, D. H. Bremner, S. W. Niu, H. L. Wu, J. Z. Wu, H. J. Wang, H. Y. Li and L. M. Zhu, *Chemical Engineering Journal*, 2018, **342**, 90-102.
- 3. H. Yang, J. Zhao, C. Wu, C. Ye, D. Zou and S. Wang, *Chemical Engineering Journal*, 2018, **351**, 548-558.
- 4. M. Salimi, M. A. Shokrgozar, D. H. Hamid and M. Vossoughi, *Materials Research Bulletin*, 2022, **152**, 111837.
- 5. B. Geng, H. Qin, F. Zheng, W. Shen, P. Li, K. Wu, X. Wang, X. Li, D. Pan and L. Shen, *Nanoscale*, 2019, **11**, 7209-7220.
- 6. K. Wang, Q. Chen, W. Xue, S. Li and Z. Liu, ACS Biomaterials Science & Engineering, 2017, **3**, 2325-2335.
- 7. C. Murugan, H. Lee and S. Park, *Journal of Materials Chemistry B*, 2023, **11**, 1044-1056.
- 8. S. Gao, H. Zhou, S. Cui and H. Shen, *Photochemical & Photobiological Sciences*, 2018, **17**, 1337-1345.
- L. Tan, S. Wang, K. Xu, T. Liu, P. Liang, M. Niu, C. Fu, H. Shao, J. Yu, T. Ma, X. Ren, H. Li, J. Dou, J. Ren and X. Meng, 2016, 12, 2046-2055.