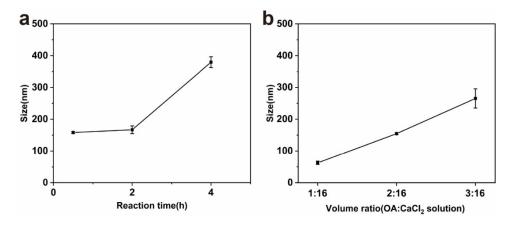
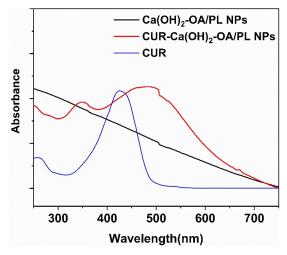
## **Supplementary Information**

## A calcium hydroxide/oleic acid/phospholipid nanoparticle induced cancer cell apoptosis by the combination of intracellular calcium overload and lactic acidosis elimination

Fei Zhou<sup>a,1</sup>, Yang Yang<sup>a,1</sup>, Yuying Liu<sup>a</sup>, Haotian Deng<sup>a</sup>, Jianhua Rong<sup>a,b</sup>, Jianhao Zhao<sup>a,b,\*</sup>
<sup>a</sup> Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China


<sup>b</sup> Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China

\*Corresponding author at: Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.


Correspondence to: Jianhao Zhao (E-mail: jhzhao@jnu.edu.cn)

Tel./fax: +86 20 37331541

<sup>1</sup> These authors contributed equally to this work.



S1 Effect of (a) reaction time and (b) volume ratio of OA and  $CaCl_2$  solution on the particle size of  $Ca(OH)_2$ -OA NPs.



S2 UV-vis spectra of CUR,  $Ca(OH)_2$ -OA/PL NPs, and CUR-Ca(OH) $_2$ -OA/PL NPs at a wavelength range of 250~750 nm.