Electronic Supplementary Information

Recyclable ferroferric oxide@titanium dioxide@molybdenum disulfide with enhanced enzyme-like activity under visible light for effectively inhibiting drugresistant bacteria in sewage

Yiping Sun, ^{#,a} Wenhui Yue, ^{#,a} Bin Niu, ^b Yu Lin, ^c Xiangyong Liu, ^c Tianming Wu, ^a Gong Zhang, ^d Ke Qu, ^{*,e} Lu Wang, ^{*,a} and Yusheng Niu ^{*,a,e}

^a Institute of Biomedical Engineering, College of Life Sciences, Qingdao University,

Qingdao 266071, China

^b Jinan Art School, Jinan 250002, China

° Yantai Center for Disease Control and Prevention, Yantai 264003, China

^dCenter for Water and Ecology, State Key Joint Laboratory of Environment

Simulation and Pollution Control, School of Environment, Tsinghua University,

Beijing 100084, China

^eCollege of Materials and Chemistry & Chemical Engineering, Chengdu University

of Technology, Chengdu 610059, China

^f School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China

[#] Yiping Sun and Wenhui Yue contributed equally to this work.

*Correspondence: <u>quke18@cdut.edu.cn (K</u>. Qu); <u>LWang@qdu.edu.cn</u> (L. Wang);

nys@qdu.edu.cn (Y. Niu)

S1. Kinetic and reaction mechanism of the peroxidase-like activity of Fe₃O₄@TiO₂@MoS₂

The kinetic parameters and reaction mechanism of the POD-like behavior of $Fe_3O_4@TiO_2@MoS_2$ were studied using the Michaelis equation. Kinetics study were performed in the acetate buffer (100 mM, pH 4.0) with the final concentration of H₂O₂ (5 mM) and various concentrations of TMB (0.1–1.8 mM) or with the final concentration of TMB (1 mM) and diverse concentrations of H₂O₂ (0.06–0.5 mM). The values of Vmax and Km were evaluated by the Equation (1), where [S], Km, V, and Vmax are the substrate's concentration, Michaelis constant, initial velocity, and the maximal reaction velocity, respectively.

$$V = \frac{V_{max} \times [S]}{V_m + [S]} \tag{1}$$

Statistical analysis: All data are shown as mean \pm s.d.

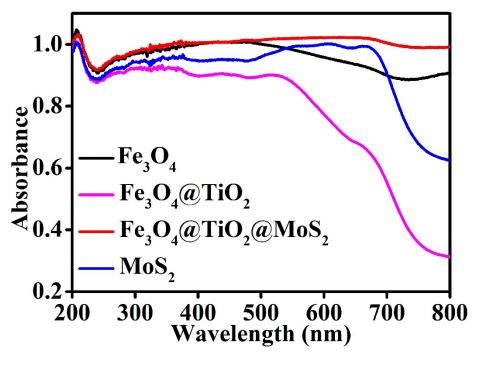
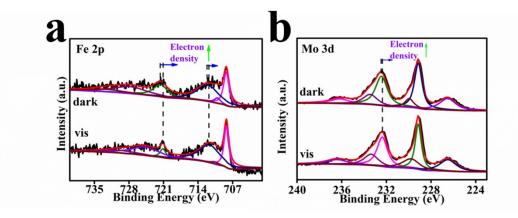



Fig. S1.UV-visdiffusereflectancespectraof Fe_3O_4 Fe_3O_4 TiO_2 Fe_3O_4 TiO_2 MoS_2 and MoS_2

Fig. S2. High-resolution XPS for Fe 2p (a) and Mo 3d (b) of $Fe_3O_4@TiO_2@MoS_2$ in the dark ($Fe_3O_4@TiO_2@MoS_2$ (Dark)) or under the visible light irradiation from the Xe lamp with a 430 nm cutoff filter ($Fe_3O_4@TiO_2@MoS_2$ (Vis)).

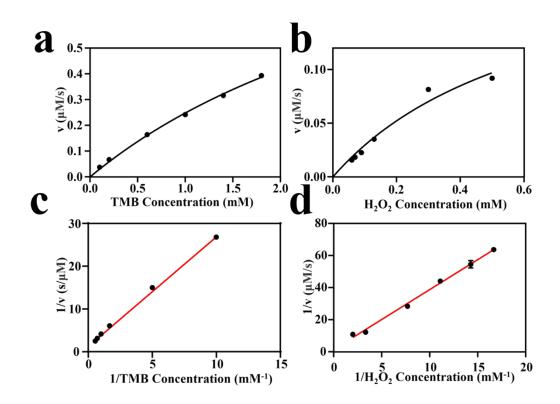


Fig. S3. Steady-state kinetics of the peroxidase-like activity of the $Fe_3O_4@TiO_2@MoS_2$.

a, c) The concentration of H_2O_2 was fixed, and the concentration of TMB changed; b, d) The concentration of TMB was fixed and the concentration of H_2O_2 changed; The error bars represent the standard deviation for three measurements (n = 3).

Fig. S4. Steady-state kinetics of the peroxidase-like activity of the MoS₂. a, c) The concentration of H_2O_2 was fixed, and the concentration of TMB changed; b, d) The concentration of TMB was fixed and the concentration of H_2O_2 changed; The error bars represent the standard deviation for three measurements (n = 3).

Fig. S5. (a) The magnetic hysteresis loops of $Fe_3O_4(I)$, $Fe_3O_4@TiO_2(II)$, and $Fe_3O_4@TiO_2@MoS_2(III)$ and (b) physical drawing of magnetic separation of $Fe_3O_4@TiO_2@MoS_2$.

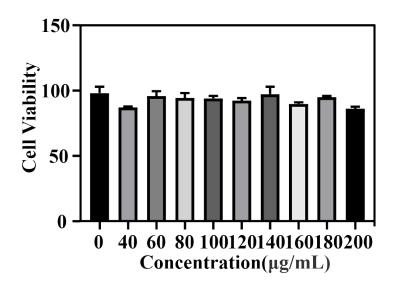
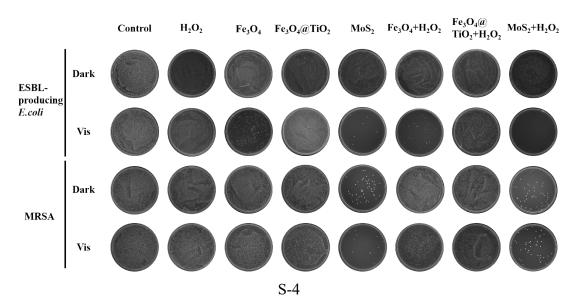



Fig. S6. MTT cytotoxicity assay: The viability of L929 cells treated with different sizes of $Fe_3O_4@TiO_2@MoS_2$ was used as an example. Error bars indicate the standard deviation of the three measured values (n = 3).

Fig. S7. Colony plots of the inhibition effect of different treatments on ESBL-producing *E. coli* and MRSA.

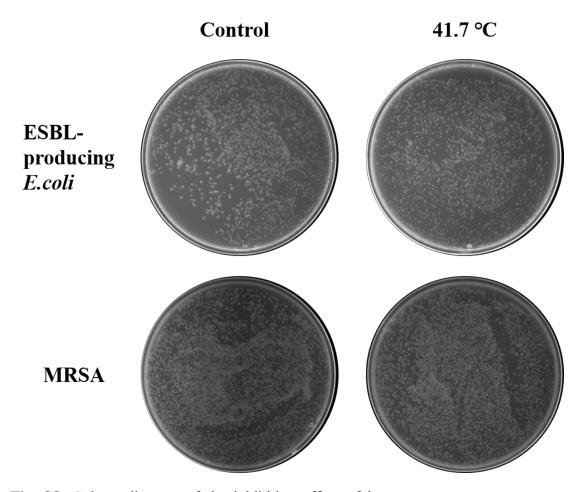
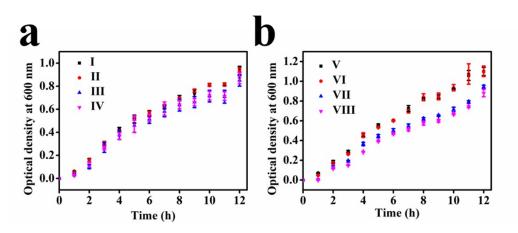



Fig. S8. Colony diagram of the inhibition effect of low-temperature treatment on ESBL-producing *E. coli* and MRSA.

Fig. S9. The growth curves of MRSA under (a) dark conditions and (b) visible light irradiation. Cultured bacterial cells were treated with (I/V) Sterile water as control,

(II/VI) H_2O_2 , (III/VII) Fe_3O_4 @Ti O_2 @Mo S_2 , and (IV/VIII) Fe_3O_4 @Ti O_2 @Mo S_2 + H_2O_2 .

Table S1. Comparison of Michaelis-Menten constants (K_m) and maximum initial reaction rates (V_{max}) of the oxidation reaction catalyzed by Fe₃O₄@TiO₂@MoS₂, MoS₂, HRP, TiO₂@CeOx, Fe₃S₄, and GO-COOH.

Catalyst	K _m (mM)		V _{max} (10 ⁻⁷ M/s)		References
	H_2O_2	ТМВ	H_2O_2	TMB	
Fe ₃ O ₄ @TiO ₂ @MoS ₂	0.6678	4.184	2.264	12.86	This work
MoS ₂	1.442	0.1923	0.4216	0.4027	This work
HRP	3.7	0.434	0.871	1	1
TiO ₂ @CeO _x	1.39	0.3	0.55	0.12	2
Fe ₃ S ₄	1.158	0.160	21.68	11.46	3
GO-COOH	3.99	0.0237	38.5	34.5	4
MoO _{3-X} DNs	0.26	2.65	1.52	0.0152	5

References

- 1. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nat Nanotechnol*, 2007, **2**, 577-583.
- 2. L. Artiglia, S. Agnoli, M. C. Paganini, M. Cattelan and G. Granozzi, *ACS Appl Mater Interfaces*, 2014, **6**, 20130-20136.
- 3. C. Ding, Y. Yan, D. Xiang, C. Zhang and Y. Xian, *Microchimica Acta*, 2015, **183**, 625-631.
- 4. Y. Song, K. Qu, C. Zhao, J. Ren and X. Qu, *Adv Mater*, 2010, **22**, 2206-2210.
- 5. Y. Zhang, D. Li, J. Tan, Z. Chang, X. Liu, W. Ma and Y. Xu, *Small*, 2021, **17**, e2005739.