Electronic Supplementary Information

Atomically dispersed Fe-Zn dual-site nanozymes with synergistic catalytic effects for the simultaneous detection of Cr(VI) and 8-hydroxyquinoline

Min Feng,^a Xiaofang Chen,^a Yuhang Liu,^b Yan Zhao,^a Pran Gopal Karmaker,^a Jia Liu,^a Ya Wang,^{*a} and Xiupei Yang^{*a}

^aCollege of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China. ^bSchool of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro/Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, PR China.

*Corresponding author at: College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, PR China.

E-mail addresses: ywang312@163.com (Y. Wang), xiupeiyang@cwnu.edu.cn (X. Yang)

Catalyst	Substrate	$V_{max}(10^{-8} \text{M} \cdot \text{s}^{-1})$	W (mg/L)	<i>K_m</i> (mM)	Ref.
FeSNC	тмв	201	16	2.46	[2]
	H_2O_2	261		25.44	
Fe ₅₅ -NC	ТМВ	27	1	0.37	[3]
	H_2O_2	23	1	4.90	
BiSA@Au-200	тмв	92	22.2	1.54	[4]
	H_2O_2	79.6	33.3	59.6	
Fe-NC-800NTs	тмв	65	5	0.08	[5]
	H_2O_2	15.7		2.47	
HRP	тмв	10	0.001	0.43	[6]
	H_2O_2	8.71		3.70	
FeZn-NC	тмв	3.1	3.25	0.05	This work
	H_2O_2	2.5		0.07	
MWCN/FeZn-NC	ТМВ	4.3	3.25	0.04	This work
	H_2O_2	6.9		1.34	

Table S1 Comparison of the kinetic parameters of different single-atom nanozymes and HRP.

No.	Method	Materials	Linear Rang (µM)	LOD (µM)	Ref.
1	Colorimetry	PNPG-PEG	0.01-12.5	0.012	[7]
2	Colorimetry	GO	0.07-0.43	0.0058	[8]
3	Colorimetry	AuNR@Ag	5-35	1	[9]
4	Colorimetry	CeO ₂ NRs-MOF	0.03-5	0.02	[10]
5	Colorimetry	CoFe ₂ O ₄ /H ₂ PPOP	0.6-100	0.026	[11]
6	Fluorescence	NH ₂ -CuMOFs	0.1-20	0.018	[12]
7	Fluorescence	CQDS	1.5-30	0.023	[13]
8	Fluorescence	GCPF	0-50	0.22	[14]
9	Colorimetry	FeZn-NC	1-10	0.56	This work
10	Colorimetry	MWCN/FeZn-NC	0.1-15	0.040	This work

 Table S2 Comparison of the proposed method with other methods for the detection of Cr(VI).

No.	Method	Materials	Linear Rang (µM)	LOD (µM)	Ref.
1	Electrochemical	CoPc-SPCE	10-250	0.89	[15]
2	Electrochemical	ANSA-GC	0.5-425	0.16	[16]
3	Electrochemical	SLSMCNTPE	0.2-1000	0.11	[17]
4	Colorimetry	FeZn-NC	0.4-50	0.18	This work
5	Colorimetry	MWCN/FeZn-NC	0.15-50	0.055	This work

 Table S3 Comparison of the proposed method with other methods for the detection of 8-HQ.

Sample	Initial (μM)	Added (μM)	Found (µM)	Recovery (%)	RSD (%, n=5)
Hair oil		5.0	5.27± 0.12	105.4	2.4
	-	25.0	26.43 ± 0.36	105.7	1.4
		45.0	46.13 ± 0.28	102.5	0.6
Conditioner		5.0	4.86 ± 0.10	97.2	2.0
	-	25.0	25.78 ± 0.37	103.1	1.4
		45	45.59 ± 0.14	101.3	0.3

 Table S4 Analytical results of the 8-HQ determination in samples.

Fig. S1 Effect of MWCN (a) and tempetature (b) on the catalytic activity of MWCN/FeZn-NC.

Fig. S2 UV-vis spectra of different materials in the H_2O_2/TMB solution.

Fig.

MWCN.

Fig.

FeZn-NC.

Fig. S7 Effect of pH (a) and temperature (b) on the catalytic activity of MWCN/FeZn-NC.

Fig. S8 Effect of the amount of TMB (a) and H_2O_2 (b) on the detection of Cr(VI).

Fig. S9 Effect of anions on the chromogenic system of Cr(VI).

Fig. S10 Effect of the amount of TMB (a) and H_2O_2 (b) on the detection of 8-HQ.

Fig. S11 Relationship between the Abs and different concentration of free radical scavengers.

Fig. S12 ESR spectra of the DMPO/ \cdot O₂⁻ spin adduct of MWCN/FeZn-NC/H₂O₂.

References

- Ghayyem, S., Swaidan, A., Barras, A., Dolci, M., Faridbod, F., Szunerits, S., Boukherroub, R., 2021. Colorimetric detection of chromium (VI) ion using poly(N-phenylglycine) nanoparticles acting as a peroxidase mimetic catalyst. Talanta. 226, 122082. <u>https://doi.org/10.1016/j.talanta.2021.122082</u>.
- (2) Jiao, L., Kang, Y., Chen, Y., Wu, N., Wu, Y., Xu, W., Wei, X., Wang, H., Gu, W., Zheng, L., Song, W., Zhu, C., 2021. Unsymmetrically coordinated single Fe-N₃S₁ sites mimic the function of peroxidase. Nano Today. 40, 101261. <u>https://doi.org/10.1016/j.nantod.2021.101261</u>.
- (3) Kim, D., Choi, E., Lee, C., Choi, Y., Kim, H., Yu, T., Piao, Y., 2019. Highly sensitive and selective visual detection of Cr(VI) ions based on etching of silver-coated gold nanorods. Nano. Converg. 6, 34. <u>https://doi.org/10.1186/s40580-019-0206-1</u>.
- (4) Liu, W., Chu, L., Zhang, C., Ni, P., Jiang, Y., Wang, B., Lu, Y., Chen, C., 2021. Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem. Eng. J. 415, 128876. <u>https://doi.org/10.1016/j.cej.2021.128876</u>.
- (5) Nghia, N.N., Huy, B.T., Lee, Y.I., 2018. Colorimetric detection of chromium(VI) using graphene oxide nanoparticles acting as a peroxidase mimetic catalyst and 8-hydroxyquinoline as an inhibitor. Microchim. Acta. 186, 36. <u>https://doi.org/10.1007/s00604-018-3169-8</u>.
- (6) Qiu, L., Ma, Z., Li, P., Hu, X., Chen, C., Zhu, X., Liu, M., Zhang, Y., Li, H., Yao, S., 2021. Sensitive and selective detection of chromium (VI) based on two-dimensional luminescence metal organic framework nanosheets via the mechanism integrating chemical oxidation-reduction and inner filter effect. J. Hazard. Mater. 419, 126443. <u>https://doi.org/10.1016/j.jhazmat.2021.126443</u>.
- (7) Song, J., Zhou, H., Gao, R., Zhang, Y., Zhang, H., Zhang, Y., Wang, G., Wong, P.K., Zhao, H., 2018. Selective determination of Cr(VI) by glutaraldehyde cross-linked chitosan polymer fluorophores. ACS Sens. 3, 792-798. <u>https://doi.org/10.1021/acssensors.8b00038</u>.
- (8) Song, N., Zhong, M., Xu, J., Wang, C., Lu, X., 2022. Single-atom iron confined within polypyrrole-derived carbon nanotubes with exceptional peroxidase-like activity for total antioxidant capacity. Sens. Actuat. B: Chem. 351, 130969. <u>https://doi.org/10.1016/j.snb.2021.130969</u>.
- (9) Wang, X., Zhao, M., Song, Y., Liu, Q., Zhang, Y., Zhuang, Y., Chen, S., 2019. Synthesis of ZnFe₂O₄/ZnO heterostructures decorated three-dimensional graphene foam as peroxidase mimetics for colorimetric assay of hydroquinone. Sens. Actuat. B: Chem. 283, 130-137. <u>https://doi.org/10.1016/j.snb.2018.11.079</u>.
- (10) Yan, H., Jiao, L., Wang, H., Zhu, Y., Chen, Y., Shuai, L., Gu, M., Qiu, M., Gu, W., Zhu, C., 2021. Single-atom Bianchored Au hydrogels with specifically boosted peroxidase-like activity for cascade catalysis and sensing. Sens. Actuat. B: Chem. 343, 130108. <u>https://doi.org/10.1016/j.snb.2021.130108</u>.
- (11) Yuan, H., Peng, J., Ren, T., Luo, Q., Luo, Y., Zhang, N., Huang, Y., Guo, X., Wu, Y., 2021. Novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots for highly efficient adsorption and detection of Cr(VI). Sci. Total. Environ. 760, 143395. <u>https://doi.org/10.1016/j.scitotenv.2020.143395</u>.