Supporting Information

Synthesis of biologically-derived polypyrogallol nanofiber for antibacterial application

Zhen Tian^a, Guo Wu^a, Matt Libby^a, Kang Wu^a, Kyung Jae Jeong^a, and Young Jo Kim^{a*}

^a Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.

* To whom correspondence should be addressed: Fax: 1-603-862-3747; Tel: 1-603-862-2298 E-mail: youngjo.kim@unh.edu

Table of Contents

Table S1. Peak assignments of FT-IR spectra for PG and PPG
Figure S1. (a) Schematic for the synthesis of poly(pyrogallol). (b) Optical image of Eumelanin pigments4
Figure S2. The aggregation status of PPG and Mel dispersed in water after 1 minute (a) and 48 hours (b)
Figure S3. UV-vis-NIR absorption spectra of PPG and Mel dispersed in water
Figure S4. Raman spectra of Mel. Two broad peaks at about 1380 and 1580 cm ⁻¹ indicate that Mel exhibits semi-crystalline structure similar to that of disordered graphite7

Wavenumber (cm ⁻¹) ^a		Assignments
PG	PPG	
3365, 3223	3446, 3300	Phenolic O–H stretching
	1590, 1562	aromatic skeletal vibration of
		polymer chain
1615, 1519, 1482, 1361	1410, 1378, 1349	C–C/C=C stretching
1286, 1239	1239	Phenolic C–O stretching
	1278, 1038	Phenyl ether C–O–C stretching
	1012	Vinyl ether stretching
846, 828	838	Bending vibration of C-H

Table S1. Peak assignments of FT-IR spectra for PG and PPG

^aEstimated uncertainty = ± 1 cm⁻¹.

Figure S1. (a) Synthesis of poly(pyrogallol) nanofiber. (b) Optical image of eumelanin pigments.

Figure S2. *Time course aggregation observation of eumelanin (Mel) and PPG during (a) 1 minute and (b) 48 hours.*

Figure S3. UV-vis-NIR absorption spectra of PPG and Mel dispersed in water.

Figure S4. Raman spectra of Mel. Two broad peaks at about 1380 and 1580 cm⁻¹ indicate that Mel exhibits semi-crystalline structure similar to that of disordered graphite.