Supporting Information

Au/Mn nanodots platform for in vivo CT/MRI/FI multimodal bio-imaging and photothermal therapy against tongue cancer

Zhe Yang^{1, ‡}, Yueqi, Zhao^{1, ‡}, Yang Li^{4, ‡}, Lei Song⁴, Yangliu Lin¹, Kaimeng Liu⁴, Yujia Zhang⁴, Andrei V. Zvyagin ⁵, Linan Fang^{2, *}, Yuanqing Sun^{3, *}, Bai Yang¹, Quan Lin^{1, *}

¹ State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.

² Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun
130000, China.

³ State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China

⁴ Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130012, China

⁵Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia.

The PDF file includes:

Figure S1. The corresponding diameter distribution of Au NDs and Au/Mn NDs with different molar ration of Au and Mn

Figure S2. Zeta potential of Au/Mn NDs.

Figure S3. Hydrated radius distribution.

Figure S4. UV-vis-NIR absorbance of Au/Mn NDs.

Figure S5. CT, MRI (T_1 and T_2) images and UV-vis spectra of Au/Mn NDs with gradient percent of doping Mn.

Figure S6. MRI intensites $(T_1, a \text{ and } T_2, b)$ of Au/Mn NDs.

Figure S7. CT intensities quantitative analysis via time.

Figure S8. Thermo-graphic photographs of tumor-bearing mice exposed to 1064 nm laser for different time using 0.5, 1 and 1.5 W/cm² power after injection with PBS and Au/Mn NDs.

Figure S9. Serum biochemical parameters for Cardiac, liver and renal function.

Figure. S1. The corresponding diameter distribution of (a) Au NDs (1.9 nm) and different molar ration of Au and Mn (b) 9:1 (2.1 nm), (iii) 6:4 (3.2 nm), (iv) 4:6 (3.5 nm).

Figure. S2. Zeta potential of Au/Mn NDs showing positive charges on surface.

Figure. S3. Hydrated radius distribution.

Figure S4. UV-vis-NIR absorbance of Au/Mn NDs.

Figure. S5. a) and b) were CT and MRI (T_1 and T_2) images of Au/Mn NDs with gradient percent of doping Mn. c) UV-vis spectra of Au/Mn NDs aqueous solution. d) corresponding Abs intensity of Au/Mn NDs with gradient percent of doping Mn.

Figure. S6. MRI intensites $(T_1, a \text{ and } T_2, b)$ of Au/Mn NDs.

Figure. S7. CT intensities quantitative analysis via time.

Figure. S8. Thermo-graphic photographs of tumor-bearing mice exposed to 1064 nm laser for

different time (0, 1, 2, 3, 4, 5 min) using 0.5, 1, 1.5 W/cm² power after injection with PBS and Au/Mn NDs a) PBS + 1 W/cm², temperature increased to 38.3 °C after 5 min irradiation; b) NDs + 0.5 W/cm², temperature increased to 39.6 °C after 5 min irradiation; c) NDs + 1 W/cm², temperature increased to 58.1 °C after 5 min irradiation; d) NDs + 1.5 W/cm², temperature increased to 63.3 °C after only 1.5 min irradiation.

Figure S9. Serum biochemical parameters for Cardiac, liver and renal function in control and

Au/Mn NDs group.