Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Supplement Information 2 Molecularly imprinted fiber array solid-phase microextraction 3 strategy for simultaneous detection of multiple estrogens Qingqing Zhou¹, Yunli Duan¹, Zhigang Xu^{1*}, Yu Tian¹, Zhimin Liu^{1*}, Chunbo Liu², Pei He², Zhihua Liu², Xiaoxi Si² 6 1 Faculty of Science, Kunming University of Science and Technology, Kunming 7 650500, China. 8 2 R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, 9 China *Corresponding author: xuzgkmust@gmail.com (Z.G. Xu); lab chem@126.com (Z.M. Liu)

Fig. S1. Schematic diagram of the preparation process of MIP fiber coating.

36

Fig. S2. Polymer solvent optimization (A), a: acetonitrile; b: methanol-acetonitrile (1:1, v/v); c: methanol-acetonitrile (1:2, v/v); d: methanol-acetonitrile (1:3, v/v); e: methanol-acetonitrile (2:3, v/v); and molar ratio optimization among template molecules, functional monomers and crosslinkers (B).

41

42 1. Optimisation of the extraction conditions

Extraction time will affect the equilibrium of extraction. The effects of extraction
time which included 60, 90, 120, 150, 180, 210 min were investigated to extract E2

from 50 mL of spiked water samples at a concentration of 100.00 μ g/L. Polymer coating was then immersed in 0.25 mL desorption solvent of methanol-acetic acid (9:1, v/v). At the same time, the coating was desorbed by ultrasound for 10 minutes. As shown in Fig. 2A, the amount of E2 extracted increases with extraction time. The extraction amount of E2 reaches highest at 120 min. With further increases the extraction time did not significantly increase the extraction amount of the E2. Therefore, 120 min was chosen as sufficient for effective extraction of E2.

This study desorption time of 3, 5, 10, 15 and 20 min were investigated to achieve high desorption efficiency of the E2 from sorbents. No significant difference was seen between 5 minutes and 10 minutes desorption. Thus, 5 min was chosen as optimum desorption time (Fig. 2B).

The desorption solvent is a critical factor during the desorption process which 56 should sufficiently break the hydrogen bonds between the E2 and MAA. Five 57 desorption solvents including acetonitrile-acetic acid (9: 1, v/v), acetonitrile, 58 methanol-acetonitrile (1:1, v/v), methanol and methanol-acetic acid (9:1, v/v) were 59 investigated (Fig. 2C). The best desorption performance of the polymer was achieved 60 when the mixture of methanol-acetic acid (9:1, v/v) was selected as desorption solvent. 61 Considering ionic strength could affect the binding amount of analytes by 62 squeezing-out and salting-out effects. The effect of ionic strength examined using 63 NaCl solutions varying in mass fractions from 0% to 20%. As shown in Fig. 2D, the 64 adsorption amount of E2 by polymer decreased with the mass fraction increase of 65 NaCl. This may be due to the squeezing-out effect being stronger than that of salting-66

67 out which unfavorable for E2 adsorption. Furthermore, the added ions may penetrate 68 into the diffuse bilayer on surfaces of absorbent, reducing the repulsion between 69 absorbers and producing in a compact aggregate structure ^{1,2}. Thus, increasing NaCl 70 had adversely influence on adsorption of E2 by polymer. Consequently, experiments 71 were carried out without adding NaCl.

The pH value of extraction solvent could affect the presence forms of the target 72 analytes, so impacting the extraction performance of coating. We use hydrochloric 73 acid (0.1 M HCl) or sodium hydroxide (0.1 M NaOH) to adjust the pH of extracted 74 aqueous solution. E2 has a pKa value of 10.5. At pH 10.5, E2 presents neutral (about 75 40%) and anionic (about 60%) forms. When value of pH below 8.0, E2 is in its 76 neutral forms (90 to 99%)³. When E2 is in molecular form it facilitates the formation 77 of hydrogen bonds between the hydroxyl group in E2 and the carboxyl group in the 78 polymer. Furthermore, the protonation of hydroxyl groups of E2 at pH <4 ⁴, which 79 weakened the H-bonding between the polymer and E2. So we expect the optimal pH 80 range for the extraction around pH 4.0-8.0. As present in Fig. 2E with the increase of 81 pH value, the extraction amount increase first and then start decreasing, when the pH 82 value is 7.0 the extraction amount reach to the maximum. However, when the pH 83 value is 8.0, the extraction amount decreased significantly. Therefore, the solution pH 84 was maintained at 7.0 to obtain the maximum extraction amount. 85

92 Fig. S4. Nitrogen adsorption-desorption isotherms (A), pore size distribution of the MIP and NIP
93 (B), and different pore size ratio analysis (C).

96 Fig. S5. Evaluation of extraction stability of MIP fiber array. Every 12 hours represent a period.

98 Fig. S6. Scatchard fitting curves. MIP fiber array adsorption estrogens (A)-(E), and

99 insets show NIP fiber array adsorption estrogens, respectively.

101

102 **Fig. S7.** Chromatograms for the analysis of five estrogens in milk. (a) 20.00 mg/L mixed standard; 103 (b), (c), (d), The spiked sample of the 100.00, 50.00, 5.00 μ g/L estrogens mixed standard solution 104 was extracted by the MIP-SPME fiber array, respectively; (e) The sample extracted by the MIP-105 SPME fiber array; (f) The sample used for direct detection; (1) bisphenol F, (2) bisphenol A, (3) 106 17 β -estradiol, (4) bisphenol B, (5) estrone.

108 Supplementary tables

]	E2	Ν	MAA
Atom	Atomic charge	Atom	Atomic charge
C (1)	-0.078	C (1)	-0.01
C (2)	-0.12	C (2)	-0.176
C (3)	0.277	C (3)	0.49
C (4)	-0.146	C (4)	-0.23
C (5)	0.045	O (5)	-0.421
C (6)	0.044	O (6)	-0.416
C (7)	-0.192	H (7)	0.113
C (8)	-0.158	H (8)	0.085
C (9)	-0.109	H (9)	0.081
C (10)	-0.154	H (10)	0.107
C (11)	-0.087	H (11)	0.107
C (12)	-0.128	H (12)	0.271
C (13)	-0.117		
C (14)	-0.167		
C (15)	-0.163		
C (16)	-0.161		
C (17)	0.165		
C (18)	-0.187		
O (19)	-0.476		
O (20)	-0.441		
H (21)	0.07		
H (22)	0.077		
H (23)	0.054		
H (24)	0.098		
H (25)	0.087		
H (26)	0.088		
Н (27)	0.076		
H (28)	0.089		
H (29)	0.113		
H (30)	0.083		
H (31)	0.082		
H (32)	0.085		
H (33)	0.106		
H (34)	0.092		
H (35)	0.084		
H (36)	0.09		
H (37)	0.106		
H (38)	0.085		

Table S1. Atomic charges in 17β -estradiol (E2) and methacrylic acid (MAA).

H (39)	0.064	
H (40)	0.073	
H (41)	0.064	
H (42)	0.079	
H (43)	0.253	
H (44)	0.258	

Table S2. Brunauer-Emmett-Teller (BET) measures surface area and pore parameters.

Fibers	Surface area (m^2/g)	Average pore Diameter (nm)	Total pore volume (cm ³ /g)
MIP	235.935	1.413	8.337
NIP	237.875	6.673	7.936

Table S3. The RSD of inter-day, inter-day, batches and cycles.

RSD (%) 4.16 3.92 3.47 3.59		inter-day	intra-day	batches	cycles	
	RSD (%)	4.16	3.92	3.47	3.59	

Table S4. Structure of the seven analogues.

Compounds	Structure	Molecular weight	pKa (predicted)
17β-estradiol	HO CH3 OH	272.38	10.27
Estrone	HO CH ₃ O	270.37	10.25
Bisphenol A	HO H ₃ CCH ₃	228.29	10.29
Bisphenol B	HO CH ₃ OH	242.31	10.27
Bisphenol F	НОСОН	200.23	9.91

Dimethyl phthalate		194.18	3.42
Phenol	ОН	94.11	9.86

Table S5. Distribution coefficients (Kd), enrichment factor (EF) and imprinting factor (IF) 119 calculated from the selectivity study.

Analytes	<i>Kd</i> MIP	<i>Kd</i> NIP	EF MIP	EF NIP	IF
E2	9924.90	9901.07	133.16	101.08	1.32
E1	9912.84	9885.57	114.73	87.39	1.31
BPA	9920.98	9889.52	126.55	97.73	1.29
BPB	9915.08	9893.30	118.03	93.72	1.26
BPF	9907.39	9866.51	99.60	77.91	1.28
DMP	9526.13	9480.30	21.10	19.24	1.10
Phenol	7242.90	6901.56	3.63	3. 23	1.12

Table S6. Analysis of desorption rate and extraction rate (100.00 μ g/L).

Analytes —	Desorpti	on rate /%	Extraction rate /%			
	MIP	NIP	MIP	NIP		
E2	84.29	84.20	78.99	60.03		
E1	83.56	83.28	68.64	52.47		
BPA	83.35	82.51	75.91	54.85		
BPB	81.19	81.53	76.59	57.48		
BPF	86.87	86.76	62.15	43.17		
DMP	88.51	95.17	11.92	10.11		
Phenol	83.59	80.60	2.17	1.46		

Fiber array	Analytaa	Low-aff	inity sites	High-affinity sites		
	Analytes	$Ka (mg/L) \qquad Q_{max} (mg/g)$		Ka (mg/L)	Q_{max} (mg/g)	
	E2	4.28	23.31	0.15	1.79	
MIP	E1	3.74	17.40	0.14	1.57	
	BPA	4.00	20.97	0.18	1.91	
	BPB	2.78	15.56	0.16	1.68	
	BPF	3.20	16.58	0.15	1.31	
NIP	E2	1.86	8.75	/	/	
	E1	2.08	7.45	/	/	
	BPA	2.34	10.64	/	/	
	BPB	2.14	9.98	/	/	
	BPF	1.84	7.03	/	/	

134 Table S7. Scatchard fitting parameter analysis.

136 Table S8. The established method in dairy products sample.

Analyta	Lincor rongo (ug/L)	Linerequetion	D 2	LOD	LOQ
Allalytes	Elliear range (µg/L)	Liner equation	K ²	$(\mu g/L)$	$(\mu g/L)$
E2	1.00-200.00	Y=0.0233X+0.0713	0.9992		
E1	1.00-200.00	Y=0.0205X+0.0371	0.9995		
BPA	1.00-200.00	Y=0.0707X+0.1430	0.9998	0.33	1.00
BPB	1.00-200.00	Y=0.0790X+0.1155	0.9998		
BPF	1.00-200.00	Y=0.0655X+0.2751	0.9967		

Table S9. The spiked recovery of the milk and yogurt dairy product samples analysis.

						Spiked co	ncentration (µ	ıg/L)			
0 1	Amplator	Found		5.00			50.00			100.00	
Samples	Analytes	$(\mu g/L)$	Detected ^a	Recovery	RSD	Detected ^a	Recovery	RSD	Detected ^a	Recovery	RSD
			$(\mu g/L)$	(%)	(%)	$(\mu g/L)$	(%)	(%)	$(\mu g/L)$	(%)	(%)
	E2	/	5.14	102.87	8.25	54.12	108.23	6.06	103.66	103.66	0.52
	E1		5.05	101.07	7.92	59.53	119.05	7.09	97.37	97.37	4.02
Milk-1	BPA	/	5.22	104.35	9.42	51.38	102.76	6.86	100.11	100.11	2.45
	BPB	/	4.62	92.41	9.40	51.40	102.79	5.65	101.21	101.21	6.23
	BPF	/	4.59	91.79	7.41	58.95	117.90	3.61	98.10	98.10	2.42
	E2	/	4.02	80.43	5.54	48.40	96.80	9.42	107.31	107.31	5.67
	E1	/	4.13	82.54	5.88	46.75	93.50	5.82	92.70	92.70	5.07
Milk-2	BPA	/	5.69	113.83	2.87	59.70	119.41	4.78	113.74	113.74	1.40
	BPB	/	4.19	83.70	6.53	56.07	112.13	6.02	118.55	118.55	6.50
	BPF	/	5.12	102.47	5.99	55.78	111.56	7.59	118.35	118.35	3.94
	E2	/	3.74	74.75	6.54	42.92	85.83	0.92	93.79	93.79	8.52
Milk-3	E1	/	4.38	87.54	9.07	56.56	113.11	062	103.35	103.35	5.06

	BPA	/	5.74	114.78	6.86	53.82	107.63	1.81	110.77	110.77	6.80
	BPB	/	4.62	92.41	7.21	58.95	117.90	0.47	110.01	110.01	6.66
	BPF	/	4.04	80.70	8.08	48.60	97. 20	4. 25	114.40	114.40	8.48
	E2	/	3.77	75.42	9.22	38.78	77.55	6.09	83.62	83.62	5.72
Vecut	E1	/	5.45	108.94	1.23	49.25	98.51	6.45	100.89	100.89	7.39
i ogurt-	BPA	/	5.97	119.35	3.04	55.45	110.89	9.02	112.79	112.79	2.83
1	BPB	/	5.42	108.94	1.48	59.24	118.47	7.27	117.05	117.05	3.79
	BPF	/	5.94	118.72	5.92	57.65	115.30	2.51	117.98	117.98	3.93

139 "/" means not found.

140 ^aData were expressed as the mean Detected concentration determined from triplicate independent experiments.

141

142 References

143 1. L. Jiang, Y. Liu, G. Zeng, S. Liu, X. Hu, L. Zhou, X. Tan, N. Liu, M. Li, and J. Wen, Chem.

144 Eng. J., 2018, **339**, 296-302.

145 2. X. Dong, L. He, H. Hu, N. Liu, S. Gao, and Y. Piao, Chem. Eng. J., 2018, 352, 371-379.

146 3. W. Liu, H. Li, S. Yu, J. Zhang, W. Zheng, L. Niu, and G. Li, *Biosens. Bioelectron.*, 2018, 104, 147 79-86.

148 4. H. L. de Oliveira, B.C. Pires, L.S. Teixeira, L.A.F. Dinali, N.S. Simões, W. d. S. Borges, and

149 K.B. Borges, Microchem. J., 2019, 149, 104043-104055.