Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Microwave-assisted rapid synthesis of N-enriched amphibious carbon quantum dots for sensitive detection of ROS and multiple other applications

Ranjit De ^{a,b}, Kyung Won Jo ^{a,c}, Byoung Hun Lee ^d, Surajit Some ^{e,*} and Kyong-Tai Kim ^{f,*}

- ^a Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, South Korea
- ^b Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
- ^c HESED BIO, Institute of Membrane Proteins, Pohang, Gyeongbuk 37563, Republic of Korea
- ^d Department of Electrical Engineering, Center for Semiconductor Technology Convergence, Pohang University of Science and Technology, Pohang 37673, South Korea
- ^e Department of Specialty Chemicals Technology, Institute of Chemical Technology, Mumbai 400019, India
- ^f Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, South Korea

*Corresponding author. E-mail: ktk@postech.ac.kr (KTK), ktk@handong.edu (KTK); sr.some@ictmumbai.edu.in (SS)

Figure S1. ATR-FTIR spectra of citric acid, guanidine nitrate, and synthesized nitrogen-doped carbon quantum dots (N-CQDs) highlighting the O-H and N-H bands in the wavenumber region from 3,500 to 3,300 cm⁻¹.

Figure S2. The dispersibility of nitrogen-doped carbon quantum dots in solvents with different solvent polarities. Abbreviation. DMSO: dimethyl sulfoxide.

Scheme S1. A schematic presentation of the different types of nitrogen containing moieties in nitrogen-doped carbon quantum dots.

Figure S3. The size distribution of the synthesized N-CQDs measured in water was found to be within the range 3 to 8 nm which centered around 5.6 nm.

Evaluation of the Interplane Distance by the following Bragg's Equation,

 $d_{(hkl)} = \lambda/(2Sin \theta),$

Here, d = interplane spacing, and λ = 0.15406 nm

For, $2\theta = 19.4$, $d_{(002)} = 0.15406/(2Sin (19.4/2)) = 0.46$ nm

For, $2\theta = 9$, $d_{(100)} = 0.15406/(2Sin (9/2)) = 0.98$ nm

Figure S4. The surface charge of synthesized N-CQDs obtained by zeta-potential measurements in PBS buffer of pH 7.4.

Figure S5. Fluorescence intensity of nitrogen-doped carbon quantum dot (N-CQD) is much higher than that of the carbon quantum dot prepared from citric acid (citric acid CQD). In addition, interaction of H_2O_2 with N-CQD is much more efficient than that of citric acid CQD.

Calculation of Quantum Yield

$$Q = Q_{\rm R} \frac{I}{I_{\rm R}} \frac{A_{\rm R}}{A} \left(\frac{\eta}{\eta_{\rm R}}\right)^2 = 0.31 \times \frac{60.3}{29.1} \times \frac{0.054}{0.089} \times \left(\frac{1.33}{1.33}\right)^2 = 0.39$$

Table S1. The different mass ratio of Citric Acid and Guanidine Nitrate and different reaction duration

 were investigated in this study.

Reaction Duration Mass Ratio of Citric Acid and Guanidine Nitrate	10 min	7 min	5 min	3 min	2 min
1:1	٧	٧	٧	٧	٧
1:2	٧	٧	٧	٧	٧
2:1	٧	٧	٧	٧	٧

Figure S6. (a) Fluorescence response of synthesized N-CQDs (1 mg mL⁻¹) at different concentrations of H_2O_2 . (b) The fluorescence quenching efficiency at different concentrations of H_2O_2 obeyed a straight-line equation. The quenching efficiency was calculated using the expression (I₀-I)/I₀, where I = fluorescence intensity of N-CQDs in presence of H_2O_2 and I = fluorescence intensity of N-CQDs in absence of H_2O_2 .

SI.	Synthesis	Detection method	Detection method Limit of Linear range		Ref.
No.	method		detection		
1	Hydrothermal	Colorimetry	6.5 μM	$315 \mu M - 6.5 \mu M$	1
2	Hydrothermal	Colorimetry	5.3 μM	$1170~\mu M-20~\mu M$	2
3	Solvothermal	Fluorometry	$8 \mu M$	$1 \text{ mM} - 100 \mu\text{M}$	3
4	Solvothermal	Chemiluminescence	11.7 μM	$50 \ mM - 1 \ mM$	4
5	Solvothermal	Fluorometry	14 mM	0.5 M - 50 mM	5
6	Microwave	Fluorometry	2.1 μM	$6.2 \text{ M} - 50 \mu \text{M}$	This work

Table S2. A comparison of the H_2O_2 detection by the proposed method with similar other reported methods.

References

- 1 P. Li, X. Y. Sun and J. S. Shen, *Front. Chem.*, 2021, **9**, 713104.
- 2 L. Lin, X. Song, Y. Chen, M. Rong, T. Zhao, Y. Wang, Y. Jiang and X. Chen, *Anal. Chim. Acta*, 2015, **869**, 89–95.
- 3 X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen and H. Feng, *Analyst*, 2014, **139**, 2322–2325.
- 4 C. L. Shen, G. S. Zheng, M. Y. Wu, J. Y. Wei, Q. Lou, Y. L. Ye, Z. Y. Liu, J. H. Zang, L. Dong and C. X. Shan, *Nanophotonics*, 2020, **9**, 3597–3604.
- 5 C. L. Shen, L. X. Su, J. H. Zang, X. J. Li, Q. Lou and C. X. Shan, *Nanoscale Res. Lett.*, 2017, **12**, 447.