Supporting Information for

A novel Gd³⁺ DTPA-bisamide complex with high relaxivity as an MRI contrast agent

Jiaxi Ru, ‡^a Weiyuan Xu, ‡^b Manchang Kou,^c Hu Dong,^d Xiaoliang Tang, *^c Yu Chen,^a

Lingling Kang,^a Lixiong Dai, *^b Chao Liang.*^a

^a Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, P. R. China

^b Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China

^c Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China

^d State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China

Materials and Instrumentation.

All reagents and solvents were obtained commercially and used without further purification unless otherwise noted. ¹H NMR and ¹³C NMR spectra were recorded on JNM-ECS-400 MHz spectrometers and referenced to the solvent signals. Mass spectra (ESI) were performed on Bruker Daltonics Esquire6000 mass spectrometers.

Determination of the association constant of L- Gd³⁺ complex system.

The total binding constant of L complexing with Gd^{3+} was studied by the absorbance curve at 270 nm, which was obtained from the absorbance titration spectra of L with the increase of $Gd(NO_3)_3 \cdot 6H_2O$ in water. The absorbance titration for L-Gd³⁺ system exhibited 1:1 stoichiometry. The equilibrium is given by following equation:

$$Gd + L \leftrightarrow GdL$$

The association constant, *K*, is expressed as:

$$K = \frac{[GdL]}{[Gd]eq [L]eq} = \frac{[GdL]}{([Gd][GdL]) \xi_L[GdL])}$$

where $[Gd]_{eq}$, $[L]_{eq}$ and [GdL] are the equilibrium concentrations of free Gd^{3+} , ligand L and L- Gd^{3+} , respectively. [Gd] and c_L are the initial concentrations of Gd^{3+} and ligand L, respectively. The equation is transformed to:

$$[GdL] = \frac{(c_L + [Gd] + 1 / K) - \sqrt{(c_L + [Gd] + 1 / K^2) - 4c_L[Gd]}}{2}$$

Absorbance is given by the Lambert-Beer law as follows:

$$A_{0} = \varepsilon_{0} c_{L} l$$
$$A = \varepsilon_{0} [L]_{eq} l + \varepsilon [GdL] l$$
$$A_{max} = \varepsilon [GdL]_{max} l = \varepsilon c_{L} l$$

 A_0 is the absorbance of L at 270 nm without Gd^{3+} , A is the absorbance of L at 270 nm obtained with Gd^{3+} , and A_{\max} is the absorbance of L at 270 nm in the presence of excess amount of Gd^{3+} . These relations together with $c_{\mathrm{L}} = [\mathrm{L}]_{\mathrm{eq}} + [\mathrm{GdL}]$ lead to:

$$\frac{A-A_0}{A_{max}-A_0} = \frac{[GdL]}{c_L}$$

Thus, the following equation is obtained:

$$A = A_0 + \frac{A_{max} - A_0}{2} \{ (1 + \frac{[Gd]}{c_L} + \frac{1}{c_L K}) - \sqrt{(1 + \frac{[Gd]}{c_L} + \frac{1}{c_L K}^2) - 4\frac{[Gd]}{c_L} \} \}$$

The equation was used for fitting of the absorption titration data with Gd^{3+} . The obtained curve is shown in Figure S1.

Fig. S1 ¹H NMR Spectrum of L in DMSO-d₆.

Fig. S2 ¹³C NMR Spectrum of L in DMSO-d₆.

Fig. S3 ESI mass spectrum of L.

Fig.S4 FT-IR spectrum of L.

Fig. S5 ESI mass spectrum of GdL.

Fig. S6 ESI mass spectrum of **GdL**. (The original magnification was in a range from 858 to 962).

Fig.S7 FT-IR spectrum of GdL.

Fig. S8 UV-Vis absorbance spectrum of L (10 μ M) upon titration with Gd³⁺ (0–20 μ M) in water. Inset: titration curve of L with Gd³⁺.

Fig. S9 Determination of the association constant by UV-Vis absorbance spectrum. The absorbance change of L at 270 nm in water with the increase of $Gd(NO_3)_3 \cdot 6H_2O$. The red line is the nonlinear fitting curve obtained assuming a 1:1 association between L and Gd^{3+} . [L] = 1.0×10^{-5} M.

Fig. S10 Relaxivitys r_2 (1/ T_2) versus different concentrations of **GdL** and Magnevist[®] in water at 37 °C.

Fig. S11 Relaxivitys r_2 (1/ T_2) versus different concentrations of **GdL** and Magnevist[®] in 4.5% BSA solution at 37 °C.

Fig. S12 The transversal cross-sectional images and color-mapped images of mouse tumour after intravenous injection of **GdL** and Magnevist[®] at 27 min post-injection.

Fig. S13 The hemolytic ratio of the control and GdL (50 - 1000 μ M). Deionized water served as the positive control and PBS served as the negative control.

Namehor	Atom	Coordinates		
Number		X	Y	Ζ
1	С	-1.680154	1.516815	2.388965
2	Н	-2.562313	1.331336	3.020154
3	Н	-0.903881	0.807586	2.688179
4	С	-1.205860	2.940484	2.624532
5	Н	-0.999977	3.067221	3.696107
6	Н	-2.007415	3.644323	2.390758
7	Ν	-1.973328	1.263488	0.967794
8	С	-3.131232	2.021935	0.469058
9	Н	-3.203360	2.972137	1.004781
10	Н	-4.068701	1.482008	0.649610
11	С	-2.984586	2.387023	-1.012346
12	О	-1.800825	2.753889	-1.351489
13	О	-3.974189	2.354788	-1.744931
14	Ν	-0.017984	3.308039	1.817837
15	С	1.201264	3.014077	2.602095
16	Н	1.242222	3.679743	3.477931
17	Н	1.113764	1.988821	2.976599
18	С	2.492454	3.156909	1.815034

Table S1 DFT optimized coordinates for GdL in the ground state.

19	Н	2.566984	4.151804	1.370036
20	Н	3.338407	3.067857	2.512359
21	Ν	2.573356	2.158713	0.744392
22	С	-0.055706	4.733204	1.443692
23	Н	-1.096161	5.006098	1.236607
24	Н	0.290289	5.375199	2.264558
25	С	3.409360	2.554898	-0.388928
26	Н	3.162013	3.587361	-0.654379
27	Н	4.482507	2.503170	-0.160610
28	С	2.983265	0.843097	1.239883
29	Н	3.952913	0.548110	0.832140
30	Н	3.103597	0.862343	2.331423
31	С	-2.193412	-0.163444	0.724355
32	Н	-1.431591	-0.731844	1.267015
33	Н	-3.180701	-0.490890	1.068480
34	С	-1.946485	-0.493465	-0.733934
35	Ο	-0.941964	-0.043299	-1.307008
36	С	1.916091	-0.193686	0.983591
37	Ο	0.720896	0.144000	1.075780
38	С	3.101977	1.687326	-1.614501
39	Ο	1.915736	1.174434	-1.639243
40	Ο	3.964514	1.534723	-2.476519
41	С	0.714856	5.073563	0.163947
42	Ο	0.809471	4.118666	-0.696671
43	Ο	1.141377	6.215547	0.018956
44	Gd	0.136639	1.979471	-0.416333
45	Ν	-2.776434	-1.336382	-1.366460
46	Н	-2.489388	-1.587999	-2.308035
47	Ν	2.251976	-1.468949	0.758389
48	Н	1.464842	-2.108947	0.697816
49	С	7.072440	-1.844865	-2.943563
50	С	5.836004	-1.399056	-2.537301
51	С	5.292213	-1.903211	-1.338838
52	С	6.054605	-2.835867	-0.593356
53	С	7.739682	-2.786960	-2.139136
54	С	4.008473	-1.487696	-0.879386
55	С	5.517768	-3.333267	0.662997
56	С	4.261206	-2.855067	1.120165
57	С	3.524405	-1.926367	0.312589
58	С	3.788344	-3.317573	2.362959
		2 941494	-2 952319	2 748896
59	Н	2.841484	-2.752517	2.7 10090
59 60	H C	4.543188	-4.224459	3.070767
59 60 61	H C C	2.841484 4.543188 5.764546	-4.224459 -4.650291	3.070767 2.520757

63	Н	7.534264	-1.484104	-3.856742
64	Н	5.275398	-0.656822	-3.099472
65	Н	8.717384	-3.157024	-2.444601
66	Н	4.213366	-4.605974	4.031306
67	Н	6.376189	-5.372376	3.059452
68	Ν	6.245053	-4.224048	1.366806
69	Ν	7.263923	-3.268759	-1.004302
70	С	-8.700664	-0.500672	-0.184130
71	С	-7.438394	-0.127136	-0.583425
72	С	-6.405385	-1.085760	-0.576334
73	С	-6.719449	-2.401239	-0.151386
74	С	-8.905436	-1.834039	0.214504
75	С	-5.080471	-0.752248	-0.989717
76	С	-5.663703	-3.399952	-0.127014
77	С	-4.351170	-3.030924	-0.520619
78	С	-4.093553	-1.686943	-0.952527
79	С	-3.341147	-4.010126	-0.459154
80	Н	-2.324449	-3.751980	-0.739074
81	С	-3.664493	-5.279750	-0.039077
82	С	-4.997911	-5.545732	0.317180
83	Н	-4.865588	0.259356	-1.333510
84	Н	-9.524731	0.204924	-0.173091
85	Н	-7.221222	0.888941	-0.901914
86	Н	-9.896864	-2.153614	0.532255
87	Н	-2.915672	-6.062475	0.021238
88	Н	-5.278468	-6.543953	0.649769
89	Ν	-5.966154	-4.648342	0.282581
90	Ν	-7.961237	-2.757925	0.235361