Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Hollow Multishelled Heterostructures with Enhanced

Performance for Laser Desorption/Ionization Mass

Spectrometry based Metabolic Diagnosis

Congcong Pei,^{+a} Rui Su,^{+b, c} Songting Lu,^{+a} Xiaonan Chen,^a Yajie Ding,^a

Rongxin Li,^a Weikang Shu,^a Yu Zeng,^a Yingying Lin,^a Liang Xu,^b

Yuqiang Mi,*^{b, c} and Jingjing Wan*^a

^aSchool of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China. ^bTianjin Second People's Hospital, Tianjin Medical University, Tianjin 300192, China.

^cTianjin Institute of Hepatology, Tianjin 300192, China

* Corresponding author:

Prof. Jingjing Wan (E-mail: jjwan@chem.ecnu.edu.cn.); Yuqiang Mi

(miyuqiang@tj.gov.cn)

Fig. S1. XRD pattern of Mn-MIL-100.

Fig. S2. a) TEM image and b) XRD pattern of slightly etched Mn-MIL-100.

Fig. S3. STEM and line-scan (yellow line) EDX of Mn-MIL-100/ZIF.

Fig. S4. FTIR spectra of ZIF, Mn-MIL-100, and Mn-MIL-100/ZIF.

Fig. S5. XRD patterns of Zn, Co-ZIF, Mn-MIL-100, and Mn-MIL100/ZIF.

Fig. S6. TEM image, HADDF-STEM, and corresponding element mapping images of the TSH ZMO/CMO ultrathin slices.

Fig. S7. a) HADDF-STEM image of ultrathin slices ZMO/CMO by ultramicrotomy; b) The wt% of elements in selected area elemental analysis of Fig. S7a.

Fig. S8. XPS spectrum of TSH ZMO/CMO.

Fig. S9. TEM images of a) SSH ZMO/CMO and b) DSH ZMO/CMO; c) XRD spectrum of SSH ZMO/CMO and DSH ZMO/CMO.

Fig. S10. (left) (a-c) SEM images of $ZnCo_2O_4$ octahedron, Zn_2MnO_4 octahedron, and $ZnCo_2O_4$ sphere; (d-f) TEM images of $ZnCo_2O_4$ octahedron, Zn_2MnO_4 octahedron, and $ZnCo_2O_4$ sphere. (right) Mean intensities of Na⁺ adducted peaks for Ala, Man, Glu, Arg and Gluc using $ZnCo_2O_4$ sphere, Zn_2MnO_4 octahedron, $ZnCo_2O_4$ octahedron, and TSH ZMO/CMO as the matrices.

Fig. S11. The UV-vis absorption of ZSH, SSH, DSH, and TSH ZMO/CMO.

Fig. S12. Nitrogen adsorption isotherm of ZSH ZMO/CMO and TSH ZMO/CMO.

Fig. S13. Mean intensities of Na^+ and K^+ adducted peaks for 1 mg mL⁻¹ Arg using ZSH ZMO/CMO, SSH ZMO/CMO, DSH ZMO/CMO, and TSH ZMO/CMO as the matrices.

Fig. S14. a) TEM image and b) XRD pattern of $(Co,Mn)(Co,Mn)_2O_4$; c) TEM image and d) XRD pattern of $ZnMn_2O_4$.

Fig. S15. The UV-vis DRS of TSH ZMO (grey line), TSH CMO (red line).

Fig. S16. Typical mass spectra of 0.1 mg mL⁻¹ a) His and c) Pro using ZMO, CMO, and ZMO/CMO as the matrices; Mean intensities of Na⁺ and K⁺ adducted peaks for b) 0.1 mg mL⁻¹ His, and d) 0.1 mg mL⁻¹ Pro in 3 experiments using ZMO, CMO, and ZMO/CMO as the matrices.

Fig. S17. Mean intensities of Na⁺ and K⁺ adducted peaks for Glu, Try, Phe, and Asp using 0.1 mg mL⁻¹, 1 mg mL⁻¹, 10 mg mL⁻¹ TSH ZMO/CMO as the matrices.

Fig. S18. The reproducibility of Na⁺ adducted peaks for a) 0.1 mg mL⁻¹ Man, b) 0.1 mg mL⁻¹ Val, and c) 0. 1 mg mL⁻¹ Lys in 3 experiments using CHCA, DHB, DHAP, Cl-CCA, and TSH MO/CMO as the matrices.

Fig. S19. The micrograph images of sample distribution with a) CHCA, b) DHB, c) DHAP, d) Cl-CCA, and e) TSH ZMO/CMO matrices.

Fig. S20. Mass spectra of Ala, Lys, Val, Man, and Suc in a) 5.00 mg mL⁻¹ BSA and b) 0.50 M NaCl; c) 0.50 M KCl solutions using TSH ZMO/CMO as the matrix.

Fig. S21. The serum metabolic fingerprints of typical HCC serum and standard metabolites using TSH ZMO/CMO as the matrix.

Fig. S22. CV distribution of intensities for the mixture of 4 analytes was loaded in serum.

Number	Cost (RMB)	Hazarous raw materials	Time	Morphology	Size	Component	Reference
1	0.79	/	24 h	triple-shelled	250	ZnMn ₂ O ₄ /(Co, Mn)	Our work
				octahedron	nm	(Co, Mn) ₂ O ₄	
2	1.08	/	37 h	Single-shelled	6 µm	ZnCo ₂ O ₄	1
				octahedron			
3	1.11	Nitrie acid	24 h	Single-shelled	1.5	$7n_s SnO_s$	2
				octahedron	μm	2025004	
4	10.48	/	32 h	triple-shelled	1µm	ZnCo ₂ O ₄	3
				sphere			
5	2.53	/	28.5 h	triple-shelled	1µm	CuNiFe2O4	4
				sphere			
6	24.76	/	60.5 h	triple-shelled	500	Ni-Co-O	5
				sphere	nm		
7	87.27	Sodium	40.3 h	triple-shelled	2 µm	NiCo ₂ O ₄	6
		hydroxide		sphere			
8	0.98	/	90 h	triple-shelled	800	0 Co ₂ MnO ₄	7
				sphere	nm		
9	67.60	/	51 h	triple-shelled	1 μm	TiO ₂ /Fe ₂ TiO ₅	8
				sphere			
10	0.37	/	29 h	triple-shelled	700	ZnMn-O4	9
		,		sphere	nm	2	
11	673.85	Sodium	21 %	double-shelled	1	Zn ₂ SnO ₄ -SnO ₂	10
		hydroxide	2111	cube	ιμπ		

Table. S1. Comparison of methods for multishelled materials.

Table. S2. The LOD and S/N ratio of the creatinine, Asp, and Glu.

	ZMO	СМО	SSH ZMO/CMO	DSH ZMO/CMO	TSH ZMO/CMO
Creatinine	0.005 mg/mL	0.005mg/mL	0.00005 mg/mL	0.00001 mg/mL	0.00001 mg/mL
	S/N=18.7	S/N=20.4	S/N=9.3	S/N=6.2	S/N=7.2
Aspartic acid	0.0005 mg/mL	0.00001 mg/mL	0.0001 mg/mL	0.00001 mg/mL	0.00001 mg/mL
	S/N=8.3	<mark>S/N=12</mark>	S/N=9.4	S/N=4.1	S/N=6.2
Glucose	0.01 mg/mL	0.005 mg/mL	0.0005 mg/mL	0.00005 mg/mL	0.00005 mg/mL
	S/N=16.4	S/N=10.8	S/N=8.1	S/N=8.7	S/N=16.4

	Training cohort			Test cohort	
Characteristic	HCC patient	control	P value	HCC patient	control
Sex			0.911ª	/	/
Male	42	35	/	10	7
Female	30	26	/	6	2
Age (Median(ange))	61(41-81)	57(40-78)	0.414 ^b	/	/

Table. S3. Clinical characteristics of HCC patients and controls for training and test.

^a) P value was calculated by Chi-Square test; ^b) P value was calculated by t-test.

Notes and references

- 1. J. Deng, X. Yu, X. Qin, B. Liu, Y.-B. He, B. Li and F. Kang, *Energy Storage Materials*, 2018, **11**, 184-190.
- Z. Li, Y. Xiong, D. Bi, Q. Liu, C. Yang and J. Zhang, *Journal of Alloys and Compounds*, 2022, 901, 163744.
- 3. D. Xue, F. Xue, X. Lin, F. Zong, J. Zhang and Q. Li, *Nanoscale*, 2019, **11**, 17478-17484.
- 4. M. Rajabzadeh, R. Khalifeh, H. Eshghi and M. Bakavoli, *Journal of Catalysis*, 2018, **360**, 261-269.
- X. Li, L. Wang, J. Shi, N. Du and G. He, ACS Applied Materials & Interfaces, 2016, 8, 17276-17283.
- 6. J. Wang, X. Yang, L. Xu, X. Liu, X. Li, G. Jia, S. Zhang and J. Du, *ACS Applied Nano Materials*, 2022, **5**, 9893-9900.
- 7. A. Indra, P. W. Menezes, C. Das, D. Schmeißer and M. Driess, *Chemical Communications*, 2017, **53**, 8641-8644.
- M. Waqas, Y. Wei, D. Mao, J. Qi, Y. Yang, B. Wang and D. Wang, *Nano Research*, 2017, 10, 3920-3928.
- 9. J. Xu, H. Zhang, R. Wang, P. Xu, Y. Tong, Q. Lu and F. Gao, *Langmuir*, 2018, 34, 1242-1248.
- 10. L. Sun, X. Han, Z. Jiang, T. Ye, R. Li, X. Zhao and X. Han, *Nanoscale*, 2016, **8**, 12858-12862.