Supplementary Materials for:

A Nucleotide-Copper (II) Complex Possessing Monooxygenase-Like Catalytic Function

Haifeng Wu,¹ Shichao Xu,¹ Peidong Du,¹ Yuanxi Liu,¹ Hui Li,^{2*} Haijun Yang,³ Ting Wang,⁴ Zhen-Gang Wang^{1*}

¹State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.

²Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemistry Technology, Beijing 100029, PR China.

³Department of Chemistry, Tsinghua University, Beijing 100084, China.

⁴CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.

Corresponding Authors

*Address correspondence to: <u>hli@mail.buct.edu.cn, wangzg@mail.buct.edu.cn</u>

Table 1. Materials and regents

Materials	Abbreviation	CAS	Company
Adenosine monophosphate	AMP	4578-31-8	
Cytidine monophosphate	CMP	6757-06-8	Aladdia
Guanosine monophosphate	GMP	5550-12-9	
Uridine monophosphate	UMP	2287-36-8	
Adenosine		58-61-7	
Cytidine		65-46-3	
Guanosine		118-00-3	
Uridine		58-96-8	
Adenosine diphosphate	ADP	16178-48-6	
Cytidine diphosphate	CDP	34393-59-4	
Guanosine diphosphate	GDP	7415-69-2	
Uridine diphosphate	UDP	21931-53-3	Aladdin
Adenosine triphosphate	ATP	987-65-5	
Cytidine triphosphate	CTP	36051-68-0	
Guanosine triphosphate	GTP	56001-37-7	
Uridine triphosphate	UTP	108321-53-5	
Tyramine hydrochloride		60-19-5	
L-Tyrosine hydrochloride		16870-43-2	
Pyrene		129-00-0	
Copper sulfate pentahydrate	CuSO4·5H2O	7758-99-8	
Hydrogen peroxide	H_2O_2	7722-84-1	
Tyrosinase from mushroom	Tyrosinase	9002-10-2	
ААААААААААААААААА	poly A20		Hippobio

222222222222222222222222222222222222222	poly C20	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	poly G20	
ттттттттттттттттт	poly T20	

Water was deionized using a Milli-Q system (\geq 18.25 MQ·cm–1).

Figure S1 UV-vis spectra of tyramine oxidation reaction catalysed by Cu^{2+} and nucleotides. $[Cu^{2+}] = 0.1 \text{ mM}, \text{[nucleotides]} = 10 \text{ mM}, \text{[tyramine]} = 1 \text{ mM}, \text{[H}_2O_2\text{]} = 5 \text{ mM}, \text{ in water}$ (pH=8.0).

Figure S2 Structure of nucleoside monophosphate.

Adenosine monophosphate

Cytodine monophosphate

Guanosine monophosphate

Uridine monophosphate

Figure S3 Ligands' concentration effect on velocity of tyramine's oxidation reaction catalysed by Cu^{2+} and A/C/G/UMP. Cu^{2+} (0.1 mM), H₂O₂ (5mM), tyramine (1mM). The data are presented as the mean ± s.d., with the error bars representing the s.d. and N= 3.

Figure S4 KCl effect on tyramine's oxidation reaction catalysed by Cu^{2+} and AMP. AMP (20 mM), Cu^{2+} (50 μ M), H_2O_2 (5 mM), tyramine (1 mM). The data are presented as the mean \pm s.d., with the error bars representing the s.d. and N= 3.

Figure S5 6 K CW-EPR of Cu²⁺/AMP and Cu²⁺/AMP/H₂O₂/tyramine. CuSO4 (500 μ M), AMP (10 mM), H₂O₂ (1 mM), tyramine (1 mM), mwFreq (9.74GHz).

Figure S6 (A) Methanol concentration effect on the catalytic tyramine oxidation reaction. (B) EPR measurement of the system of Cu^{2+/} CMP/ H₂O₂. 60% MeOH, 100 mM DMPO, 20 mM CMP, 100 μ M Cu²⁺, 100 μ M H₂O₂. The data are presented as the mean ± s.d., with the error bars representing the s.d. and N= 3.

Figure S7 EPR measurement of the system of Cu^{2+/} GMP/ H_2O_2 . 60% MeOH, 100 mM DMPO, 20 mM GMP, 100 μ M Cu²⁺, 100 μ M H_2O_2 .

Figure S8 EPR measurement of the system of Cu^{2+/} UMP/ H₂O₂. 60% MeOH, 100 mM DMPO, 20 mM UMP, 100 μ M Cu²⁺, 100 μ M H₂O₂.

Figure S9 Free radical quenchereffect on tyramine's oxidation reaction catalysed by Cu^{2+}/AMP . Cu^{2+} (0.1mM), AMP (20 mM), H₂O₂ (5 mM), tyramine (1 mM). TBA stands for tertbutanol, while SOD stands for superoxidase dismutase. The data are presented as the mean \pm s.d., with the error bars representing the s.d. and N= 3.

Figure S10 Density functional theory model of the ternary complex intermediate of nucleotides/ $Cu^{2+}/tyramine/H_2O_2$, and the Isosurface map of IRI analyse, revealing both chemical bonds and weak interactions. IRI=1.2.

Figure S11 Free energy during the formation of HO₂• radical suggested by DFT calculations. Free energies and enthalpies were calculated at 298 K. The inserted figures were structure optimization and spin density computation during the formation of HO₂• radical suggested by DFT calculations.

Figure S12 Active energy measurements of A/C/G/UMP and copper's catalytic reaction. [nucleotide] = 20 mM, $[Cu^{2+}] = 50\mu M$, H_2O_2 (1 mM), tyramine (1 mM).

Figure S13 Deaeration effect on tyramine's oxidation reaction catalysed by Cu^{2+} and AMP. AMP (20 mM), Cu^{2+} (50 μ M), H_2O_2 (5 mM), tyramine (1 mM). Insert was the initial reaction rate. The data were presented as the mean \pm s.d., with the error bars representing the s.d. and N=3.

Figure S14 Proposal hydroxyl radical intermediate route.

Figure S15 Comparison of DNA's and nucleotide's catalytic reactivity with Cu^{2+} . Cu^{2+} (50 Mm), H₂O₂ (5 mM), tyrosine (1 mM), nucleobase in nucleotides and ssDNA (20 mM). The data are presented as the mean ± s.d., with the error bars representing the s.d. and N= 3.

Figure S16 AMP concentration effect on the catalytic oxidation of tyramine. Cu^{2+} (50 μ M), H_2O_2 (5 mM), tyramine (1 mM). The data are presented as the mean \pm s.d., with the error bars representing the s.d. and N= 3.

Figure S17 Oxidation of o-tert-butylphenol (A), dopamine (B) and tyrosine (C) catalysed by AMP/Cu²⁺. AMP (2 mM), Cu²⁺ (100 μ M), H₂O₂ (5 mM), tyrosine (1 mM), time interval (5 min).

Figure S18 Temperature effect on oxidation of tyramine catalysed by AMP/Cu²⁺, polyA20/Cu²⁺ and tyrosinase. AMP (20 mM), A20 (1 μ M), Cu²⁺ (50 μ M), H₂O₂ (1 mM), tyrosinase (10 μ M), tyramine (1 mM). The data are presented as the mean ± s.d., with the error bars representing the s.d. and N = 3.

Figure S19 Temperature effect on oxidation of tyramine catalysed by AMP/Cu²⁺, GMP/Cu²⁺, GMP/Cu²⁺, polyG20 (1 μ M), GMP (20 mM), Cu²⁺ (50 μ M), H₂O₂ (1 mM), tyramine (1 mM). The data are presented as the mean \pm s.d., with the error bars representing the s.d. and N = 3.

Figure S20 Oxidation of tyramine catalysed by Cu^{2+} and AMP/ Cu^{2+} at different temperatures. [AMP] = 20 mM, [Cu^{2+}] = 50 μ M, [tyramine] = 1 mM, [H_2O_2] = 1 mM.

