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Abstract
As a component substitute for natural enzymes, nanozymes have the advantages of easy synthesis, 
convenient modification, low cost, and high stability, which are widely used in many fields. 
However, their application is seriously restricted by the difficulty of rapidly creating high-
performance nanozymes. The use of machine learning techniques to guide the rational design of 
nanozymes has greatly overcome this difficulty. In this review, we introduce the recent progress of 
machine learning in assisting the design of nanozymes. Particular focus is given to the successful 
strategies of machine learning in predicting the activity, selectivity, catalytic mechanisms, optimal 
structures and other features of nanozymes. The typical procedures and approaches for conducting 
machine learning in the study of nanozymes are also highlighted. Moreover, we discuss in detail the 
difficulties of machine learning methods in dealing with the redundant and chaotic nanozyme data 
and provide an outlook on the future application of machine learning in the nanozyme field. We 
hope this review will serve as a useful handbook for researchers in related fields and promote the 
utilization of machine learning in nanozyme rational design and related topics.

1. Introduction
As an indispensable substance for lives, enzymes have attracted tons of attention for their efficient 
catalytic ability. Widely used in the fields of biomedicine and industrial catalysis, enzymes reduce 
the energy barrier of reactions, which thus makes them faster and more efficient.1 However, the 
application of natural enzymes has always been limited by their defects, such as dependence on mild 
catalytic conditions, easy denaturation, and purification difficulties. Finding substitutes for enzymes 
with comparable catalytic abilities is an important topic that lots of scientists are focusing on.

Since the discovery of ferromagnetic nanoparticles that possess unexpected peroxidase (POD)-
like activity by Yan's Group in 2007, nanozymes have gained a lot of attention. The number of 
nanozyme-related research publications has been increasing year by year.2, 3 Nanozymes, or 
nanomaterials with intrinsic enzyme-like activities, have been known as promising alternatives to 
natural enzymes. Besides robust catalytic ability, nanozymes possess many other better properties 
than natural enzymes, such as easy preparation, recovery, storage, and transportation, suitable for 
modification, well catalytic activity, and multiple enzyme-mimicking activities. In addition, As a 
kind of nanomaterials, they possess unique physicochemical properties, such as photothermal 
properties, magnetic properties, fluorescence properties, and so on, making their application range 
greatly increase.4, 5 At present, nanozymes have been widely used in many fields, including artificial 
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organelles6, biosensing7, 8, environmental treatment, as well as the treatment of tumor9, virus10, 
bacterial11 and other diseases. Moreover, making full use of their catalytic ability, nano-properties, 
and easy modification to make sophisticated multimodal probes is also worthy of attention. For 
example, utilizing the photothermal effect and peroxidase (POD)-like activity of bifunctional 
Au@Pt nanozyme, Jiao et al. created a novel multimodal enzyme-linked immunosorbent assay (M-
ELISA).12 Multimodal detection has a good diagnostic effect and has great advantages in the 
integration of diagnosis and treatment, but the complexity of their synthesis often limits their clinical 
application. As a kind of material with both enzymatic activities and nano-effects, nanozyme has 
become a promising tool for multimodal detection by simple synthesis and modification. In general, 
nanozymes have many advantages and play a vital role in improving human life, which would attract 
the attention of more and more researchers. It is of great significance to deeply understand and 
effectively develop nanozymes. 

However, the difficulty of developing high-performance nanozymes has greatly hindered the 
development and application of nanozymes. More tools that may help us to design nanozymes with 
better performance are badly needed. Machine learning (ML) has attracted the attention of some 
researchers for its robust learning and design ability.

As a powerful and smart tool, ML has been developed rapidly in recent years. ML is an artificial 
intelligence technique that lets computers learn and analyze data, thus the resulting predictive 
models could better perform tasks or predict outcomes. By autonomously learning from data, 
computers will become more accurate and efficient at predicting specific outcomes.

The basic idea of ML is to learn and analyze existing data to get a model, and then use the model 
to predict or classify unknown data. In this process, ML algorithms constantly try different models 
and combinations of parameters to find the best model for solving a particular problem.

The core of ML is the algorithm that trains the model. ML algorithms can be divided into 
supervised learning, unsupervised learning and reinforcement learning. Supervised learning 
requires labeled data, that is, the data set contains the correct answers. Unsupervised learning does 
not require labeled data, and its goal is to find some inherent structure and pattern in the data. In 
addition, reinforcement learning is a way to train a model through a reward mechanism, learning 
how to maximize the expected reward through trial and error. Common ML algorithms include 
linear regression, decision tree, support vector machine, neural network, etc. These algorithms can 
be applied to various fields, showing different prediction effects.

ML has been widely used in the field of life science. One and the most famous application is 
AlphaFold, which allows scientists to predict protein structure with high accuracy.13 AlphaFold is 
only a representative application of ML in protein structure prediction, which falls under the field 
of bioinformatics. In addition, ML is also widely used in evolutionary analysis14, genomic data 
analysis15, 16 and other bioinformatics research. When combined with medicine, ML has 
demonstrated exceptional capabilities in biomedical image analysis17, 18, biomedical engineering19, 
medical diagnostics20-22, drug development23, 24, healthcare 25, etc. When working with big and 
multimodal data, ML often offers superior performance over other tools. Biological information is 
often complex and high-throughput, which makes the application of ML in the field of life science 
logical.

Prediction of catalyst performance has become one of the most important applications of ML, 
which has generally performed well in established practices.26, 27 When applied in the field of 
nanozymes, ML not only helps us to rationally design nanozymes and deepen our understanding of 



nanozymes but also helps us solve more problems that may be encountered in the design and 
application of nanozymes (Scheme 1).

2. Applications of ML in the rational design of nanozymes
In the process of the discovery and development of nanozymes, the related fields have experienced 
many breakthroughs. The early discovery of nanozyme came from an accidental study. Our group 
found that Fe3O4 nanoparticles, which are usually considered to be biochemically inert, exhibited a 
catalytic ability similar to that of horseradish peroxidase (HRP). Based on this discovery, we 
proposed that magnetite nanoparticles possess intrinsic enzyme-like activity, which inspired and 
initiated the research on nanozymes.3 In the early stage, the study of nanozymes remained at such 
the level of a combination of chance, experience, trial and error, seriously hindering the 
development of high-performance nanozymes. The catalytic activity of the developed nanozymes 
was typically much lower than that of natural enzymes, which limits their practicability. Therefore, 
it is imperative to design nanozymes rationally instead of randomly synthesizing them. 

As the study progresses, researchers have made exploratory attempts in many directions. For 
example, by studying the structure-activity relationship, it was revealed that the catalase (CAT)-like 
activity of ferrihydrite nanozyme was mainly determined by the number of abundant surface iron-
associated hydroxyl groups, which provides a reference for the improvement of catalytic activity of 
ferrihydrite.28 The activity of the new nanozyme was predicted based on the density functional 
theory (DFT) calculations developed in the field of materials, which was verified by experiments. 
With the screening conditions calculated by DFT, nanozymes with good activity were found with 
computer-aided screening.29 Moreover, some scientists are working on using chemical theories to 
predict the catalytic activity of nanozyme. For instance, metal-organic framework (MOF) 
nanozymes were found to follow a Hamment-type structure-activity relationship, and their oxidase 
(OXD)-mimicking activities could be enhanced by modulating the Hammett σm value.30 The 
relationship between the number of eg occupancy and the catalytic activity of perovskite oxide-based 
POD-like nanozyme was also revealed using Sabatier's principle. 31 Apart from these aspects, the 
design inspired by natural enzymes is also an important and effective way to improve the catalytic 
capacity of nanozymes. Some groups aim to design highly active nanozymes based on simulating 
the structures of natural enzymes, including the active centers, amino acid microenvironments, and 
coordination structures.6, 32, 33 By mimicking natural enzymes, researchers prepared a series of 
single-atom nanozymes (SANs), which are known as nanozymes with isolated single metal atoms 
on each active site. SANs provide enough sites for reactants to bind and react and significantly 
improve the atomic utilization efficiency of nanozyme, making it possible to greatly enhance the 
catalytic efficiency of nanozymes.10 SANs have been paid more and more attention because of their 
superior properties and have become an important research direction of the current nanozyme 
research.

In the development of SANs, the activity enhancement process of iron-based SANs is particularly 
noteworthy. Imitating heme iron, the bioinspired single-atom iron nanozymes typically have a Fe-
N4 coordination structure, which tends to exhibit a variety of enzyme-mimicking activities that 
include POD-like and OXD-like activities (Figure 1a).6 Other researchers found that Fe-N5 SAN 
has superior OXD-like catalytic activity (Figure 1b).34 When one of the four N atoms coordinated 
with Fe was replaced by P, the kinetic constant of Fe-N3P nanozyme was an order of magnitude 
higher than those of the natural HRP (kcat/KM≈2.34×106 M-1s-1), which made it a better artificial 



enzyme (Figure 1c).35 It can be seen that the structure of the active center is a determined 
characteristic of the catalytic activity of SANs, and precise engineering of the active center greatly 
improves the catalytic ability. As a kind of nanozymes with a regularly distributed active center, the 
type and distribution of metal atoms in the active center of SANs can be simply represented by 
numbers, so they are particularly suitable to be predicted by ML. SANs were also one of the first 
nanozymes to be used for ML prediction. In 2020, ML as well as the database obtained by DFT 
calculation were used by Zhou et al. to screen the SANs with better performance. They predicted 
the adsorption Gibbs free energy change of H using the XGBR algorithm and screened catalysts for 
CO2 electroreduction with potential optimal performance from 1060 designed SANs. Moreover, a 
method for nanozyme discovery through ML and DFT database was established.36 This method is 
relatively complete and mature and is still widely used.

The application of ML in the field of nanozymes is still in the development stage, but it has 
preliminarily shown its powerful performance. The introduction of ML into the field of rational 
design of nanozymes is one of the major events in such field, which lays a foundation for the 
development of various high-performance nanozymes, and even could contribute to a deeper 
understanding of the features and catalytic mechanism of nanozymes. 
2.1 Evaluate the kinetic properties of nanozymes
ML can be involved in the screening of nanozymes by evaluating their kinetic properties and 
intuitively evaluating their activity and selectivity. A variety of enzyme kinetics descriptors, such 
as KM, Vmax, kcat, kcat/KM, etc., can be conveniently predicted by ML.

Wei et al. used the ten most important features of nanozymes (i.e., enzyme type, metal type, metal 
proportion, metal value, shape, etc.) to predict the four commonly used kinetic parameters of 
nanozymes (KM, Vmax, kcat, kcat/KM), and obtained the nanozymes with optimal catalytic activity. The 
accuracy of the prediction was 90.6% and the maximum R2 was 0.80 (Figure 2a). The predicted 
results were in agreement with the experimental results, indicating that using ML to predict the 
kinetic constants of nanozymes is reliable. By using SHapley Additive exPlanations (SHAP) to 
evaluate the contribution of input data, the metal type was found to have the greatest influence on 
the activity of nanozymes. This work deepened the understanding of researchers on metal-based 
nanozymes.37

2.2 Evaluate the thermodynamic properties of nanozymes
ML can also be used to predict the energy barrier and other thermodynamic properties of nanozyme-
catalyzed reactions, and evaluate the difficulty of catalyzing these reactions. These thermodynamic 
data are usually obtained by theoretical calculation such as DFT rather than experiment. However, 
as a theoretical method that needs a large amount of computation, DFT calculation usually requires 
the assistance of a high-performance computer and its long-time operation, which poses a great 
challenge to its wide application.38 Fortunately, ML can be used to replace DFT calculation, which 
can estimate the energy barrier with higher efficiency and accuracy to screen out the catalytic 
materials with the best activity. 9 The prediction accuracy of ML models trained with precise 
electron-related quantum data or experimental data may also be higher than that of mixed DFT.39 
Another research found that after being trained on a database of thousands of DFT calculations, the 
resulting ML model predicted the thermodynamic data of material components in six orders of 
magnitude less time than direct DFT calculations (Figure 2b).40 This is a relatively mature and 
efficient method, which has been widely used in several related studies.

Yu et al. performed ML-assisted DFT calculations using two atom descriptors (electronegativity, 



dopant atom radius) and three model descriptors (dopant atom location, dopant atom concentration, 
and band gap) to predict the maximum energy barrier and energy consumption steps of the reactions 
catalyzed by metal-doped graphdiyne-based nanozymes. The authors evaluated and screened the 
performance of different models by using the database to get the best performance model. The 
obtained extreme gradient boosting (XGB) model had excellent performance (R2=0.781), and the 
predicted results were consistent with the experimental results (Figure 2c).41

A similar approach was also used in the study conducted by Zhang et al. Based on materials 
information as well as DFT calculation, they predicted the Gibbs reaction free energy of superoxide 
dismutase (SOD)-like reaction steps catalyzed by different thiophosphate coordinated by different 
transition metal atoms (MxPySz; x=1-7, y=1-4, z=1-29). The obtained MnPS3 showed the strongest 
free radical scavenging and SOD-like activity both in human skin fibroblast cells and in a mouse 
model of Androgenetic alopecia (AGA).42

2.3 Analysis of the enzyme-mimicking activities of nanozymes
ML is also widely used to predict the types of enzymatic activities of nanozymes. One approach is 
to digitize the different catalytic activities and predict them directly using representative intrinsic 
and extrinsic factors of nanozymes. In the study conducted by Huang's group, the prediction 
accuracy for the POD-like performance of nanozymes using ML was 94.5%, which proved that the 
prediction accuracy of the group with more training data would be significantly higher.37

Another method is to predict the enzymatic types and their specificity with the physical 
descriptors of enzyme-like activities. For example, Gao et al. found a criteria through physical 
analysis, that is, the total energy change for the adsorption of a hydroxyl radical (OH•) or hydrogen 
radical (H•) onto the material surface in the gas phase (Eads,OH and Eads,H, respectively) can be used 
to predict the enzymatic types of nanomaterials (i.e. the nanozymes exhibit single CAT-like or 
combined POD-like activity). Therefore, with the Eads,OH and Eads,H database of nanozymes 
calculated by DFT, ML-assisted mining of 2D nanozymes with exclusive CAT-like activity was 
realized (Figure 3a).43

At present, many nanozymes with different enzyme-mimicking activities have been discovered, 
including oxidoreductase-like, hydrolase-like, lyase-like, and isomerase-like nanozymes.4 The 
activity types of nanozyme are mostly oxidoreductase-like and hydrolase-like, which limits the 
practical application of nanozymes to a greater extent. With the help of physics and chemistry, ML 
may help the scientific community to better understand the complex and specific relationship 
between the enzyme-mimicking activities of nanozymes and their structure (including surface lattice 
and composition, etc.). Thus, the current dilemma of lacking catalytic types of nanozymes will be 
overcome.
2.4 Assisting in the structure study of nanozymes
It is also feasible for ML to be directly used in the structural analysis of nanozymes. With ML based 
on a global exploration algorithm of configuration space and DFT calculations, the structure of 
MgCl2 heterogeneous nanozyme coated by TiCl4 was optimized and predicted by Toshiaki's group 
without prior knowledge (Figure 3b). The stable and metastable structures of the nanozyme were 
obtained. The existence of a variety of heterogeneous structures indicates that the nanozyme can be 
interconvertible to a large extent. This study successfully constructed realistic models of complex 
nanozymes through ML and increased the understanding of the properties of corresponding 
nanozymes.44 Using the combination of stochastic surface walking (SSW) global optimization with 
the neural network (NN) method (SSW-NN) invented by Liu's Group in 201745, the stable structures 



and their transition states of the MoS2-supported Cu single-atom nanozyme with sulfur vacancies 
(Cu@MoS2-Vs) with robust POD-like activity was successfully explored. Based on the simulation 
results, it is also proved that the increase of Cu loading and sulfur vacancies, and the decrease of 
microenvironment pH value can significantly improve the performance of Cu@MoS2-Vs.46

2.5 Assisting in the exploration of structure-activity relationships of nanozymes
Another approach is to use ML to reveal the relationship between the structure of nanozymes and 
their catalytic activity. In addition to the direct prediction of nanozyme catalytic activities and 
enzyme-mimicking types, ML also has good performance for atomic simulation and evaluation of 
candidate catalyst structures. Li et al. applied stochastic surface walking based on the global neural 
network potential (SSW-NN) method and DFT calculations to fast global potential energy surface 
(PES) exploration. By this method, they determined the phase diagrams for the bulk and surface of 
PdAg catalyst under reaction conditions, revealing the effects of different phase compositions and 
surface structures on the catalytic activity (Figure 3c). Based on their findings on the influence of 
in situ surface structures on PdAg catalyst, they designed a rutile-supported Pd1Ag3 catalyst that 
showed the best catalytic performance with > 96% conversion and > 85% selectivity.47

2.6 Assisting in the discovery of new nanozymes through energy computational acceleration
Traditional ML relies heavily on training data sets. The quantity and quality of data directly 
determine whether the prediction performance is good or not. However, by combining the ML, DFT, 
and discovery algorithms, we can get rid of this dependence, realize unbiased data generation, and 
greatly accelerate the discovery of nanozymes with similar properties. For example, Jennings et al. 
discovered the composition and structure of PtxAu147-x icosahedral nanoparticles with an optimal 
activity using ML-accelerated genetic algorithms (GA) (Figure 4a). Working as an energy predictor, 
ML reduces the amount of computation required by GA and DFT calculations by 50 times, showing 
a good effect for accelerating search algorithms.48

2.7 Analyzing the influencing features
In the process of using ML to screen nanozymes, some methods can be used to conveniently analyze 
the main factors affecting their catalytic activity.

One approach is to construct ML using different factors and compare the performance of these 
models to determine the most important factors. However, this approach is not optimal due to its 
complexity and may lead to misjudgment. More often, the interpretation module of ML is used to 
provide the interpretation of the models.

Some models evolved from the base model to predict performance gains while retaining the 
strong interpretability of the base model, which makes them more widely used. For instance, the 
random forest can analyze the importance of multiple factors in the input data and output the 
influence of different factors, so that we can understand which factors have the greatest influence 
on the activity of nanozymes, and then help us rationally design them. For example, the random 
forest model was used to predict the ammonia conversion for RuMK (M is the secondary metal) 
catalysts, which showed that the reactor temperature was the most important factor affecting the 
predicted activity (Figure 4b). This result is consistent with previous knowledge, proving that the 
random forest model has a robust feature ranking ability.49

For the black-box models that are difficult to explain, some external interpretation modules that 
do not rely on ML models to explain them are quite important. A reliable choice is Local 
Interpretable Model- Agnostic Explanations (LIME). LIME is a powerful interpretation technique 
that can interpret any model, providing solutions to model selection, model improvement, and model 



trust issues. The basic interpretation idea is to get the prediction results by locally perturbing the 
sample input, and then use the new data points obtained in this way to train the decision tree and 
other white-box models so that the black-box algorithm can get some interpretation with the help of 
trees. It can explain the local structure and results of the model with good interpretation 
performance.50 As an improved method of LIME, SHAP is more commonly used. SHAP calculates 
a Shapley value for each feature to measure its contribution to the predicted value.51 By applying 
SHAP, Zhang et al. studied the influence of different atomic radii and lattice factors on the 
formability of hybrid organic perovskite (HOIPs) (Figure 4c).52 Analysis of the influencing factors 
of POD/OXD activity by SHAP showed that metal factors had the greatest influence on it, which 
was the same as the result obtained by the classification model.37

2.8 Deepen our understanding of nanozymes
On the one hand, ML combined with interpretation modules can explore the features that have the 
greatest influence on nanozymes, which is conducive to understanding the structure-activity 
relationships of nanozymes.53 The assistance of ML can avoid the subjective bias of researchers that 
may hinder experimental design and the discovery of important factors.54 On the other hand, various 
structural motifs and functional groups within the surface or structure of nanozymes can be explored 
through ML combined with materials science calculations, such as the calculation of interatomic 
potentials.55 This approach has a level of detail that DFT simulations cannot achieve. This will 
enhance our understanding of the mechanisms by which nanozymes exert their catalytic effects. All 
of these suggest that further development of ML in the field of nanozyme will be of great benefit to 
our understanding of nanozymes.
2.9 Helping with other aspects in the process of nanozyme design and application
What should be noticed is that in practice ML could be used for purposes other than those mentioned 
above: classify the candidates for the potential nanozymes56, directly learn and output some data 
related to the catalytic performance of nanozymes, clarify the actual catalytic mechanism, and 
predict reactive trajectories (Figure 4d) 57, etc. In addition, how to make use of ML for image 
processing and powerful visualization to facilitate the development and application of nanozymes 
is still being explored.

3. Key ingredients affecting the predictive power of ML for nanozyme design
3.1 Collecting and processing of data set
The quantity and quality of samples have a great impact on the predicted results. Powerful data sets 
are the basis of the prediction accuracy of ML models, which largely determines the prediction 
performance of models. ML research generally requires 100 to 10000 training data points.58 Such a 
huge number of instances and a high degree of consistency put forward high requirements for data 
collection. Current data set collection methods mainly include sorting out a large number of 
experimental data in the literature and obtaining highly consistent data through First-principles 
calculations. Both of them require a lot of work and almost inevitably introduce errors. It is also a 
promising approach to create more high-throughput nanozyme synthesis and characterization 
techniques through the aid of flow reactors, robots, or computer vision to construct large 
experimental data sets with similar operating conditions, which can simultaneously overcome both 
statistical and computational errors.

Different data collection methods face different problems. The data sets obtained from published 
literature are typically from real experiments, with high credibility but poor consistency. The 



experimental conditions or statistical recording methods inevitably introduce inestimable errors in 
the data. Counting such a large amount of data and recording it in the same format requires also a 
lot of work. Although it is better and easier to use existing databases, there is still a lack of relevant 
databases in the field of nanozymes. First-principles calculations (or DFT) is also a common and 
useful approach for data set collection, but it is computationally intensive and the calculation 
number they need increases dramatically as feature dimensions increase. In addition, DFT is an 
approximate algorithm, of which the calculation results generally have a gap with the real-world 
data. The accumulation of errors in the calculation process may lead to more problems and even 
affect the final prediction results.59

Whether the data is obtained from experiments, literature, database, or DFT calculation, the 
samples should be sorted out, screened, and classified. First, the data should include features that 
have an important impact on catalytic activity. Otherwise, the predictive effect of the models may 
be significantly weakened. Common factors include the characteristics of the active sites (e.g., 
atomic number, atomic radius, d/f orbital electron number, d-band, etc.), atomic location factors 
(such as the active site of atoms doped site), microenvironment characteristics (such as the 
characteristics of carrier material, effective coordination number, etc.), the substrate binding energy, 
dissociation energy, etc. These factors deeply affect the catalytic ability of nanozymes and play an 
important role in predicting their catalytic activity. These features should be easily obtained from 
experimental data, mature databases, or DFT calculations. Moreover, selecting the most important 
features is also the key to producing reliable data sets. Extensive features may contain some 
redundant ones that are useless and may hinder or even bias the prediction results.60 For example, 
they may cause model overfitting and reduced model predictive power.61 Notably, some ML models 
could be used for feature selection when researchers are unable to determine the most important 
features. For example, random forest classifier has the optimal performance for feature selection 
and are widely used.62 In addition, using a correlation matrix to select less relevant features is a 
sensible way. Zhang et al. select seven important features including the Gibbs reaction free energy 
gotten from DFT through the application of correlation matrix as well as Pearson’s correlation 
coefficient, which is helpful to the discovery of SOD-like nanozymes.42 It is also a good choice to 
select the best one by getting mature models according to different features and compare their 
performance, which is conducive to the selection of a better model, but relatively more time-
consuming and laborious.

All samples for ML should be presented in the form of numerical values. For some non-
quantitative instances, researchers need to manually score them or use some algorithms, such as 
LabelEncoder, to assign scores to them.63 Bad data creates problems that no good algorithm can 
remedy. When collecting data, we should also attach great importance to their credibility, usability, 
and consistency, which may affect the accuracy of prediction results. 
3.2 Data set division
For one-shot ML, the evaluation and selection of models are typically done using one data set, which 
contains a limited number of instances. Therefore, the data set needs to be properly processed to get 
a training set and a testing set, so that training and testing can be performed at the same time. There 
are many ways to partition a data set, the simplest of which is called "hold-out". "Hold-out" directly 
divides a data set into two mutually exclusive sets. This method is limited by many aspects, such as 
data generalization errors. The more commonly used method is cross-validation. A traditional type 
of cross-validation, called hold-out cross-validation, divides the data set into a training set, 



validation set, and testing set with a proportion of typically 60%, 20%, and 20%. Then the model is 
trained with the training set, and different models and parameters are repeatedly tested under the 
validation set to find a satisfactory one. Finally, the testing set is used for error evaluation. At 
present, the k-fold cross-validation method is more commonly used, that is, the data set is equally 
divided into k-folds with consistent data distribution without replacement, among which the k-1 
group is used for model training, and the remaining groups are used for model capability evaluation. 
By repeating this process k times, k training and testing sets are obtained to fully evaluate the model 
and its performance. By comparing the k trained models, the relatively optimal parameters can be 
selected or calculated, and then the new model can be trained on the whole data set. Moreover, with 
the testing dataset, the performance differences between different models can be compared 
horizontally, which helps to select the appropriate model. Sun et al. used 20-fold cross-validation 
to train all of the models in their work, getting the predicted results that had fewer outliers and good 
accuracy.64 10-fold cross-validation was used to test the predictive power of the sure independence 
screening sparsifying operator (SISSO) model and find the optimal dimensionalities for each of the 
3 descriptors.61 Through grid-search optimization combined with cross-validation, Ding et al. 
optimized 54 classification models and 18 regression models built from 9 ML algorithms and got 
the feature importance distribution results that affect the chemical properties of catalysts.54

3.3 Application of suitable evaluation indicators
For different models, evaluation, and purpose requirements, different evaluation indicators need to 
be applied to measure their performance to indicate their predictive ability. The frequently used 
error rate and accuracy could help us measure performance, which respectively represents the 
proportion of the number of samples with correct and incorrect predictions in the total number of 
samples. However, these indicators alone are far from sufficient. 

There are a variety of evaluation indicators and evaluation methods available. For regression 
models, such as those predicting catalytic constants for nanozymes, the most commonly used 
performance metric is mean squared error. In particular, in specific models, the mean squared error 
is directly applied as part of themselves. For example, for Deep Neural Network (DNN), a 
commonly used ML model, there is a unique performance evaluation method, namely the loss 
function. Common loss functions include the coefficient of determination value and mean squared 
error, etc. The DNN model is constantly improved through real-time feedback, which is also the 
reason for its strong performance.65

For specific purposes and contexts, such as predicting the type of catalytic activity of nanozymes, 
we can use classification models for which several performance measures have been invented. Most 
of these performance measures are based on confusion matrix. Confusion matrix can be used for 
intuitive observation of the relationship between the predicted results of the model and the real 
results, and is commonly used in research. Confusion matrix columns true positive, false positive, 
true negative, and false negative as matrices. By observing which categories are prone to confusion, 
the model can be modified specifically to improve the overall prediction accuracy of the model. The 
good confusion matrix of the data is also one of the powerful pieces of evidence to prove the 
classification and prediction ability of models.37

Based on the confusion matrix, we can calculate many commonly used metrics, such as precision, 
recall rate, specificity, and F1-measure that comprehensively evaluates performance precision and 
recall. Taking recall as abscissa and precision as ordinate, P-R curve can be made to visually show 
the recall and precision of the learner in the sample population. In addition, the Break-Even Point 



can also be obtained at the position of the curve where recall is equal to the precision. The larger its 
value is, the better the learner is. F1 measure is the harmonic mean of precision and recall, which 
has the same function as the Break-Even Point but is more commonly used. 

The Receiver Operation Characteristic (ROC) curve, which takes a false Positive Rate as X-axis 
and a true Positive Rate as Y-axis, is also one of the most commonly used evaluation methods. A 
greater radian of the ROC curve (the area under the ROC curve) indicates a higher sensitivity, a 
lower false positive rate, and a better prediction performance of the model. The ROC curve can 
ignore the sample imbalance, so it is very commonly used in model evaluation. Using k-means 
combined with Area Under ROC Curve (AUC), researchers evaluated and compared the influence 
of different structural and dynamic drivers on the catalytic activities of nanozymes. The factors that 
had the most obvious influence (maximum AUC) were screened out, proving that conformational 
descriptors are sufficient to predict reactivity.57 

It is important to note that different performance measures can lead to different results when 
comparing the capabilities of different models. Any model has its advantages and disadvantages. 
Therefore, when evaluating, we need to select the most appropriate performance indicators to 
evaluate the model according to the data, algorithms, and requirements.
3.4 Experimental verification
ML has powerful computing power, which can achieve high-throughput screening of a large number 
of materials. However, no matter how ML develops and how its predictive ability is enhanced, it 
cannot replace the position of researchers in the experimental design, screening, and validation of 
nanozymes. Any prediction methods using ML are only estimation and prediction, but not 
substitutes for experimental results. After the prediction of nanozymes by ML, adequate 
experimental verification is still needed, which is also an essential step for model evaluation.

4. Conclusions and prospects
The rational design of nanozymes is the basis of improving the performance of nanozymes and 
promoting their applications. However, as a kind of artificial enzyme with unclear catalytic 
mechanism, it is not easy to design their structure reasonably. Fortunately, we are in an era of big 
data with rapid computer development, which gives us powerful tools like ML. ML allows us to 
avoid repeated trial and error and directly obtain reasonable predictions of the performance of new 
nanozymes. As a powerful data mining tool, ML is applied to the rational design of nanozymes and 
other related fields. It will help us to better understand nanozymes, thus promoting their rapid and 
better development. Of course, ML still has some inevitable problems, such as over-reliance on a 
certain amount of reliable data, greatly influenced by model selection and refinement, and difficult 
to match predictive performance and explanatory ability. However, these problems may be 
gradually solved in the development of ML applications in related fields. For the combination of 
nanozymes and ML, there are still some other questions we should pay attention to in the future:

(1) Establishment and development of nanozyme databases. ML is a high-throughput research 
method that relies entirely on a huge amount of training data. The training data set guarantees the 
accuracy of ML models. The quantity and accuracy of data directly determine the quality of 
prediction results, and too few or poor data may lead to model bias. Moreover, although there have 
been some mature DFT databases that could be utilized for nanozyme design,66 the nature of DFT 
calculation as a kind of approximate estimation method possess certain errors that are inevitable in 
the progress, which would affect the prediction accuracy. Studies have shown that the prediction 



performance error of the ML models trained on experimental data is less than that of the models 
trained on the DFT database, suggesting that the ML models trained on experimental data or more 
accurate thermodynamic data may bring greater benefits, while the DFT database training inevitably 
increases the error.39 Therefore, it is important and indispensable to develop databases with enough 
available information on nanozymes. It is worth expecting that currently some nanozyme databases 
have been successfully constructed (e.g., http://cdeyun.com:6063/ and DiZyme67) and are in the 
process of rapid maturation and improvement. The construction and maturation of the nanozyme 
database require the joint efforts of researchers in all related fields, together with the development 
of more efficient, more accurate, and broader coverage methods. A high-quality database can be 
built only with high-quality and high-consistency experimental data. Therefore, some standard and 
unified detection and representation methods of activity, structure, and structure-activity 
relationship, etc., are needed to guarantee the quality of data and database. The harmonization of 
standards and the development of methods are critical and will affect the future of the entire field 
of nanozyme rational design. These databases would be used to design new and better nanozymes, 
which will ultimately benefit every nanozyme researcher.

(2) Design, establishment, remolding, and application of more ML models. ML is an approach 
based on training data, but the algorithms and methods it employs determine the way and efficiency 
it extracts information from data sets. Only an appropriate and suitable algorithm could improve the 
performance of ML and reduce the probability of data misunderstanding. Therefore, the 
development and application of ML cannot be separated from the development of related 
algorithms. In the 1980s, the decision tree using the ID3 algorithm, a simple but interpretable 
algorithm, appeared. In the 1990s, with the development of algorithms, other algorithms for decision 
trees building such as CART and C4.5 were invented successively, and the classification effect of 
decision trees was gradually optimized.68-70 In 1995, the AdaBoost algorithm, which integrates weak 
classifiers to obtain strong classifiers, was born, and the performance of the decision tree integrated 
with the AdaBoost idea was greatly improved.70 In 2001, the random forest was invented. As a new 
integrated ML algorithm, it randomly trains multiple simple decision trees to obtain an excellent 
algorithm with high performance and low complexity, which is still widely used today.71 The 
development of new algorithms will never stop, and researchers interested in nanozyme rational 
design and other relative topics should keep pace with the times and continue to try and improve 
new algorithms and new interpretation models to improve the efficiency, performance, and 
adaptability of ML in the field of nanozyme. Of course, adding some auxiliary methods to an ML 
algorithm can significantly improve its efficiency or performance. For example, SWWS and similar 
methods can assist researchers in the automatic exploration of nanozyme optimal structures.46 GA, 
an evolving method that finds optimal solutions based on evaluation, is often combined with ML 
algorithms such as NN to help researchers to find the best-performing materials.49, 72 In addition, 
through manual labeling and filtering of data points and thus continuous cycle training of the model, 
the active learning method, which could reduce the dependence on data and enhance ML 
performance, is also increasingly common.73, 74 These methods, combined with the conventional 
ML models, make the performance of the models far beyond their upper limit and are well worth 
trying and applying in the field of nanozymes.

(3) The combination of ML and the theoretical knowledge of nanozyme-related disciplines. At 
present, ML has been used for direct screening or design of nanozymes, but its accuracy and 
efficiency still have a lot of room to improve. This is related to the lack of development of the 

http://cdeyun.com:6063/


nanozyme database, but more related to the characteristics of ML, such as learning and simulation. 
The combination of DFT makes ML overcome the dependence on experimental data, and because 
of this feature, it is widely used and mature.74 DFT calculations were originally developed in the 
field of materials, so we thought that with more knowledge of materials science and biology, ML 
applications might be more flexible and accurate. For example, Routh et al. combined supervised 
ML with the X-ray absorption near-edge structure (XANES) spectra and found a potential 
characterization of the relationship between XANES spectra and the physicochemical properties of 
materials. This opened a new avenue for scientists to understand nanozymes.75

(4) Other things we can do with the assistance of ML. ML can do a lot more than aid the rational 
design of nanozymes. First of all, we could study the in vivo fate and biological toxicity of 
nanozymes with ML.76, 77 Next, the help of ML allows us to predict the internalization ability of 
nanozymes to different cells and thus assess the toxicity or bioactivity of nanozymes. 77 In addition, 
ML combined with nanozymes can also have a much broader application prospect. For example, it 
can be used to predict the effect of additives on nanozyme activity during the synthesis and 
application process. In one study, Guo et al. developed a predictive study on the effects of additives 
on Cu catalysts selectivity in the ML-guided way.78 A high-resolution holographic image acquisition 
method was constructed and the catalyst nanoparticles were statistically analyzed.79 It also shows 
robust prediction ability in the aspect of nanomaterial self-assembly, and more and more related 
applications will be developed.80

High-throughput theoretical screening is a robust method for nanozyme rational design. A large 
amount of computation required determines the irreplaceable role of computer assistance in it. The 
powerful data processing, understanding, learning, and prediction performance of ML makes it a 
powerful tool for the rational design of nanozymes. Using ML for nanozyme design is an effective 
way to enhance the reactivity, efficiency, and selectivity of nanozymes, avoid duplicate 
experiments, and save energy and resources.27 This would become one of the ideal directions for 
the rational design of nanozymes.
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Scheme 1 The rational design of nanozymes can be facilitated by machine learning in many aspects.



Figure 1
The activity enhancement process of iron-based SANs. a) Mimicking the structure of natural 
enzyme, the nanozyme exhibits multiple catalytic activities, including POD-like and OXD-like 
activities. Reproduced with permission.6 Copyright 2021, Wiley-VCH. b) FeN5 SAN exhibits OXD-
like characteristics. Reproduced with permission.34 Copyright 2019, AAAS. c) FeN3P SAN shows 
better POD-like activity than FeN4 SAN. Reproduced with permission.35 Copyright 2021, Springer 
Nature.



Figure 2
ML assisted evaluation of kinetic properties and thermodynamic properties of nanozymes. a) 
Prediction accuracy of ML on the catalytic activities of POD and OXD-like nanozymes. 
Reproduced with permission.37 Copyright 2022, Wiley-VCH. b) ML exhibits excellent DFT 
replacement abilities and predicts material properties with high accuracy.40 Copyright 2014, 

American Physical Society. c) Using ML to predict the energy consumption step and maximum 
energy barrier of nanozyme. Reproduced with permission.41 Copyright 2022, American Chemical 
Society.



Figure 3
ML assisted evaluation of enzyme-mimicking activities and structure study of nanozymes. a) 
Physical descriptors were applied to predict the activity types of nanozymes. Reproduced with 
permission.43 Copyright 2022, Wiley-VCH. b) Through multiple calculations, ML helps with the 
structure determine of nanoplates. Reproduced with permission.44 Copyright 2019, American 
Chemical Society. c) ML predicts the stable surface configurations of nanozymes under certain 
reaction conditions.47 Copyright 2021, American Chemical Society. 



Figure 4
ML assisting in the energy calculation acceleration, influencing features analysis and reaction 
trajectories prediction of nanozymes. a) ML assists the acceleration of energy calculation 
algorithm. Reproduced with permission.48 Copyright 2019, Springer Nature. b) Through ML, 15 
important features that affect the catalytic activity of specific nanozymes most were directly 
output. Reproduced with permission.49 Copyright 2019, American Chemical Society. c) SHAP 
assisted ML in ranking the importance of features. Reproduced with permission.52 Copyright 2021, 
American Chemical Society. d) ML predicts catalytic reaction trajectories of nanomaterials.57 
Copyright 2019, American Chemical Society. 


