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Figure SI 1 The spectral response of the glass substrate using air as the baseline. It is evident a very intense absorption 
below 300 nm.

1. Theoretical model

1.1. AuNRs optical coefficients
Optical cross sections, which are crucial to determining the absorption coefficient, are generally solved via two different 
methods – Mie-Lorentz theory and Rayleigh or Rayleigh-Drude approximation. The last one assumes that the light-
nanoparticle interaction is described as dipoles carrying the charge whose arrangement is maximal if the nanoparticle 
and light frequencies are equal, which is called localized plasmonic resonance[1]. Mie-Lorentz's theory may be much 
more appropriate due to its enhanced accuracy, including multipole interactions. To define the nanoparticle's shape 
appropriately, however, this theory requires sophisticated mathematics whose solutions are generally followed with 
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long-time simulations unless it is a pure sphere. On the other hand, the Rayleigh-Drude approximation, although it 

imposes the conditions that , where  is the AuNR size, appears to be a perfect verification for a wide 

𝜆
2𝜋

> 𝑑𝑁𝑃 𝑑𝑁𝑃

number of shapes in IR- and Vis-ranges [2]’[3].

On the other hand, Rayleigh-Drude-approximation offers simpler solutions that may be solved without using numerical 
methods. The optical cross sections are introduced as: 

(1)
𝐶𝑎𝑏𝑠𝑖 = (𝐶𝑒𝑥𝑡𝑖) ‒ (𝐶𝑠𝑐𝑎𝑖) = (4𝜋·(2𝜋

𝜆 )·𝑖𝑚(𝛼𝑖)) ‒ (8𝜋
3

·(2𝜋
𝜆 )4·|𝛼𝑖|2)

where:

 – extinction cross section of the -particle, ;𝐶𝑒𝑥𝑡𝑖 𝑖 𝑚2

 – scattering cross section of the -particle, ;𝐶𝑠𝑐𝑎𝑖 𝑖 𝑚2

 – absorption cross section of the -particle, ;𝐶𝑎𝑏𝑠𝑖 𝑖 𝑚2

 – incident wavelength, ;𝜆 𝑚

 – total polarizability of the -particle, ;𝛼𝑖 𝑖 𝑚2

 – symbol of imaginary part𝑖𝑚

For the standard approach, the light-AuNR interaction is represented via polarizability functions of the dipole 

configurations, where the double-layered ellipsoids with an anisotropic depolarization factor  follow the formulas Л𝑖

[2]’[4]:

 
𝛼𝑖,𝑥 =

𝑉1𝑖
+ 𝑉2𝑖

4𝜋
·

(𝜀2 ‒ 𝜀ℎ)·(𝜀2 + (𝜀1 ‒ 𝜀2)·(Л𝑖,1,𝑥 ‒ 𝛿𝑖·Л𝑖,2,𝑥)) + 𝛿𝑖·𝜀2·(𝜀1 ‒ 𝜀2)
(𝜀ℎ + (𝜀2 ‒ 𝜀ℎ)·Л𝑖,2,𝑥)·(𝜀2 + (𝜀1 ‒ 𝜀2)·(Л𝑖,1,𝑥 ‒ 𝛿𝑖·Л𝑖,2,𝑥)) + 𝛿𝑖·Л𝑖,2,𝑥·𝜀2·(𝜀1 ‒ 𝜀2)

(2)

 
𝛼𝑖,𝑦 =

𝑉1𝑖
+ 𝑉2𝑖

4𝜋
·

(𝜀2 ‒ 𝜀ℎ)·(𝜀2 + (𝜀1 ‒ 𝜀2)·(Л𝑖,1,𝑦 ‒ 𝛿𝑖·Л𝑖,2,𝑦)) + 𝛿𝑖·𝜀2·(𝜀1 ‒ 𝜀2)
(𝜀ℎ + (𝜀2 ‒ 𝜀ℎ)·Л𝑖,2,𝑦)·(𝜀2 + (𝜀1 ‒ 𝜀2)·(Л𝑖,1,𝑦 ‒ 𝛿𝑖·Л𝑖,2,𝑦)) + 𝛿𝑖·Л𝑖,2,𝑦·𝜀2·(𝜀1 ‒ 𝜀2)

(3)

 
𝛼𝑖,𝑧 =

𝑉1𝑖
+ 𝑉2𝑖

4𝜋
·

(𝜀2 ‒ 𝜀ℎ)·(𝜀2 + (𝜀1 ‒ 𝜀2)·(Л𝑖,1,𝑧 ‒ 𝛿𝑖·Л𝑖,2,𝑧)) + 𝛿𝑖·𝜀2·(𝜀1 ‒ 𝜀2)
(𝜀ℎ + (𝜀2 ‒ 𝜀ℎ)·Л𝑖,2,𝑧)·(𝜀2 + (𝜀1 ‒ 𝜀2)·(Л𝑖,1,𝑧 ‒ 𝛿𝑖·Л𝑖,2,𝑧)) + 𝛿𝑖·Л𝑖,2,𝑧·𝜀2·(𝜀1 ‒ 𝜀2)

(4)

𝛿𝑖 =
𝑉1𝑖

𝑉1𝑖
+ 𝑉2𝑖

(5)

where:

 – polarizability of the -particle along the  axis, ;𝛼𝑖,𝑥 𝑖 𝑥 𝑚3

 – polarizability of the -particle along the  axis, ;𝛼𝑖,𝑦 𝑖 𝑦 𝑚3

 – polarizability of the -particle along the  axis, ;𝛼𝑖,𝑧 𝑖 𝑧 𝑚3

 – volume of the -particle’s core, ;
𝑉1𝑖 𝑖 𝑚3

 – volume of the -particle’s shell, ;
𝑉2𝑖 𝑖 𝑚3

 – complex function of the electrical permittivity of the core, here: gold permittivities, - ; 𝜀1

 – complex function of the electrical permittivity of the shell, here: CTAB permittivities, - ;𝜀2

 – complex function of the electrical permittivity of the surrounding medium, here: air, - ;𝜀ℎ

 – depolarization factor of the -particle core along the  axis, - ;Л𝑖,1,𝑥 𝑖 𝑥

 – depolarization factor of the -particle shell along the  axis, - ;Л𝑖,2,𝑥 𝑖 𝑥

 – depolarization factor of the -particle core along the  axis, - ;Л𝑖,1,𝑦 𝑖 𝑦

 – depolarization factor of the -particle shell along the  axis, - ;Л𝑖,2,𝑦 𝑖 𝑦



 – depolarization factor of the -particle core along the  axis, - ;Л𝑖,1,𝑧 𝑖 𝑧

 – depolarization factor of the -particle shell along the  axis, - Л𝑖,2,𝑧 𝑖 𝑧

The electrical permittivities are, in general, calculated via different Drude-model-based approaches. This work applies 
the Drude-CP model studied in [5] because it corresponds to many experiments. For prolate (stretched) structures, 
however, the depolarization factor should be specified via [2]‘[4]:

Л𝑖 =
1 ‒ 𝜙𝑖

2

𝜙𝑖
2

·( 1
2𝜙𝑖

·ln (1 + 𝜙𝑖

1 ‒ 𝜙𝑖
) ‒ 1) (6)

 (7)
𝜙𝑖 = 1 ‒ (𝑑𝑠𝑖

𝑑𝑙𝑖
)2

where:

 – short diameter of the -particle, ;𝑑𝑠𝑖 𝑖 𝑚

 – long diameter of the -particle, 𝑑𝑙𝑖 𝑖 𝑚

Contrary to ellipsoids, rods possess the long flat dimension, which contributes to appear new dipole configurations. 
Therefore, the depolarization factor that determines the dipole arrangement in an AuNR may be claimed to be a perfect 
parameter to solve and establish the other dipole configurations. It was discovered by Fuchs [51]. In His work, edgy shapes 

(triangles, cubes, octahedrons etc.) were determined numerically as weighted-  distributions. Considering of the two Л𝑖

highest values of the depolarization factor in a cube, it may be realized that charge arrangements imply the uniform 

distributed ( ) configuration and the one whose charges are arranged at the very opposite vertices along a cube 
 Л𝑖→

1
3

 

space diagonal ( ). Л𝑖(𝑑𝑠𝑖,𝑑𝑙𝑖)→Л𝑖(𝑑𝑠𝑖,𝑑𝑠𝑖 3) 

A similar arrangement is exploited for the AuNRs; however, depolarization factors are adopted for the prolation factors, 

, and are transformed into:𝜙𝑖

𝜙𝑖(𝑑𝑠𝑖,𝑑𝑙𝑖)→𝜙𝑖,𝑑𝑙(𝑑𝑙𝑖 ‒ 𝑑𝑠𝑖, (𝑑𝑙𝑖 ‒ 𝑑𝑠𝑖)2 + (𝑑𝑠𝑖)2) (8)

𝜙𝑖(𝑑𝑠𝑖,𝑑𝑙𝑖)→𝜙𝑖,𝑑𝑠(𝑑𝑠𝑖, (𝑑𝑙𝑖 ‒ 𝑑𝑠𝑖)2 + (𝑑𝑠𝑖)2) (9)

for - and -, - axes respectively. Figure SI 2 demonstrates these four assumed charge arrangements that have been 𝑦 𝑥 𝑧

adjusted to the -oriented AuNRs. 𝑥

Nonetheless, the platform-deposited particles are also governed by the particle-surface interaction. This situation is 
assumed differently from the other configurations due to the outer electrical field distribution from the interaction 
between two different compounds – AuNR and the PE layer. So far, many papers have been published about the issue 
where the AuNPs are dispersed in a solution, and only a few explain precisely how the interaction may be treated 
[2]’[7]’[8]’[9] once immobilized on a surface. Moreover, none of them deal with elongated shapes due to the high 
complexity of the problem. This work introduces the surface effect as the interaction between AuNRs and the PE layer 
that is considered a flat disk.

Basing on Royer’s and Yamaguchi’s approaches: [2]’[10]:

(𝛼𝑖,𝑥)𝑠𝑢𝑟 = ( ‒ (𝑑𝑠𝑖

2 )3·(1 ‒ 𝜙𝑖
2

𝜙𝑖
2 )1

2

3·𝑞11(𝑖·(1 ‒ 𝜙𝑖
2

𝜙𝑖
2 )1

2)
·

𝜀1 ‒ 𝜀ℎ

𝜀1 ‒ 𝑒11(𝑖·(1 ‒ 𝜙𝑖
2

𝜙𝑖
2 )1

2)) (10)



(𝛼𝑖,𝑦)𝑠𝑢𝑟 = ( 2·(𝑑𝑠𝑖

2 )3·( 1
𝜙𝑖

)
3·𝑞10(𝑖·(1 ‒ 𝜙𝑖

2

𝜙𝑖
2 )1

2)
·

𝜀1 ‒ 𝜀ℎ

𝜀1 ‒ 𝑒10(𝑖·(1 ‒ 𝜙𝑖
2

𝜙𝑖
2 )1

2)) (11)

(𝛼𝑖,𝑧)𝑠𝑢𝑟 = ( 2·(𝑑𝑠𝑖

2 )3·( 1
𝜙𝑖

)
3·𝑞11(𝑖·(1 ‒ 𝜙𝑖

2

𝜙𝑖
2 )1

2)
·

𝜀1 ‒ 𝜀ℎ

𝜀1 ‒ 𝑒11(𝑖·(1 ‒ 𝜙𝑖
2

𝜙𝑖
2 )1

2)) (12)

𝑒ΛΜ =

𝑝ΛΜ(𝑖·(1 ‒ 𝜙𝑖
2

𝜙𝑖
2 )1

2)·(𝑑𝑞ΛΜ(𝑖·𝜓)

𝑑𝜓 )
𝜓 = (1 ‒ 𝜙𝑖

2

𝜙𝑖
2 )1

2

𝑞ΛΜ(𝑖·(1 ‒ 𝜙𝑖
2

𝜙𝑖
2 )1

2)·(𝑑𝑝ΛΜ(𝑖·𝜓)

𝑑𝜓 )
𝜓 = (1 ‒ 𝜙𝑖

2

𝜙𝑖
2 )1

2

(13)

where:

 and  – associated Legendre polynomials of a first and a second kind, respectively;𝑝ΛΜ 𝑞ΛΜ

 , – orientation modes with respect to a surfaceΛ Μ 

Adopting the formulas to the considered system from Royer et al.[2], the oscillation modes,  and , refer to the Λ 𝑀
particle’s orientation. Hence, each electrical dipole perpendicular to the surface (or projected on  axis) corresponds to 𝑦
the situation in which , . On the other hand, for  and  axes, charges are not directed  towards the surface, Λ = 1 𝑀 = 0 𝑥 𝑧
thus every mode equals . 1

The surface interaction, however, is also coupled with the distance between particles. From Yamaguchi’s [44,50] approach, 
the nanoparticle distance is governed by the following:

(𝛼𝑖,𝑥)𝑌𝑎 =
(𝛼𝑖,𝑥)𝑠𝑢𝑟

1 + ( (𝛼𝑖,𝑥)𝑠𝑢𝑟

4
3

𝜋·𝑑𝑠𝑖
2·𝑑𝑙𝑖

)·𝛽||𝑖
(14)

(𝛼𝑖,𝑦)𝑌𝑎 =
(𝛼𝑖,𝑦)𝑠𝑢𝑟

1 + ( (𝛼𝑖,𝑦)𝑠𝑢𝑟

4
3

𝜋·𝑑𝑠𝑖
2·𝑑𝑙𝑖

)·𝛽 ⊥ 𝑖
(15)

(𝛼𝑖,𝑧)𝑌𝑎 =
(𝛼𝑖,𝑧)𝑠𝑢𝑟

1 + ( (𝛼𝑖,𝑧)𝑠𝑢𝑟

4
3

𝜋·𝑑𝑠𝑖
2·𝑑𝑙𝑖

)·𝛽||𝑖
(16)



𝛽||𝑖
=

4
3

𝜋·𝑑𝑠1𝑖
2·𝑑𝑙1𝑖

𝜀𝑠𝑢𝑟 + 𝜀ℎ
·( ‒ (𝜀𝑠𝑢𝑟 ‒ 𝜀ℎ)

(𝑑𝑠1𝑖 + 𝑑𝑠2𝑖)3
+

2
𝜀𝑜·𝜀ℎ

·
(𝑁

2)
∑

𝑙

(1 ‒ 3·( 𝑢𝑙

𝑢𝑙
2 + (𝑑𝑠1𝑖 + 𝑑𝑠2𝑖)2)2)

𝑢𝑙
3 ) (17)

𝛽 ⊥ 𝑖
=

4
3

𝜋·𝑑𝑠1𝑖
2·𝑑𝑙1𝑖

𝜀𝑠𝑢𝑟 + 𝜀ℎ
·( ‒ 2·(𝜀𝑠𝑢𝑟 ‒ 𝜀ℎ)

4𝜋·𝜀𝑜·𝜀ℎ·(𝑑𝑠1𝑖 + 𝑑𝑠2𝑖)3
+

2·𝜀𝑠𝑢𝑟

𝜀𝑜·𝜀ℎ
·

(𝑁
2)

∑
𝑙

( 1

𝑢𝑙
3)) (18)

where:

 and  – associated Legendre polynomials of a first and a second kind, respectively;𝑝ΛΜ 𝑞ΛΜ

 , – oscillation modes;Λ Μ 

 and  – short and long dimension of the internal layer, here: gold, ; 𝑑𝑠1𝑖 𝑑𝑙1𝑖 𝑚

 – thickness of the capping agent (CTAB), ;𝑑𝑠2𝑖 𝑚

   – NR – NR semidistance from their centers (is identical to the surface disk dimensions): here:  for - and  𝑢𝑙 ~98.5 𝑥

 for -projected axis;~78.5 𝑛𝑚 𝑧

 – Yamaguchi’s coefficient for parallel contribution to the surface effect; 
𝛽||𝑖

 – Yamaguchi’s coefficient for perpendicular contribution to the surface effect; 
𝛽 ⊥ 𝑖

 refers to the pair of the - and -particle, up to the  pairs;  𝑙 𝑖 (𝑖 + 1) (𝑁
2)

 – permittivity of surface, here: PE material;𝜀𝑠𝑢𝑟

 – vacuum permittivity, 𝜀𝑜 𝐹·𝑚

Figure SI 2. Electric dipole configurations that have been considered in the calculations 
for 15-15-55-nm gold nanorods (orange color) coated by a 4-nm CTAB compound (green color)

It is worth emphasizing that for dense-packed AuNRs, the formulas (1)(8)-(18) require to be improved with the AuNR-
AuNR multipole interactions, e.g., based on the Lorentz-Lorenz or Mie theory [10]. However, the AuNRs are considered 



sufficiently remote to include this relationship in this work. The total polarizability also requires some special conditions 
that are due to the particle’s symmetry, and they are specified with the one following equation [2]:

  (19)
𝛼𝑖 =

2
3(2

3
·((𝛼𝑖,𝑦)𝑌𝑎 + (𝛼𝑖,𝑧)𝑌𝑎) +

1
3

·((𝛼𝑖,𝑥,𝑑𝑙)𝑌𝑎)) +
1
3

·(2
3

·((𝛼𝑖,𝑦,𝑑𝑠)𝑌𝑎 + (𝛼𝑖,𝑧,𝑑𝑠)𝑌𝑎) +
1
3

·((𝛼𝑖,𝑥)𝑌𝑎))
where:

 – surface polarizability of the -particle along the rod space diagonal projected on the  axis, ;(𝛼𝑖,𝑥,𝑑𝑙)𝑌𝑎 𝑖 𝑥 𝑚3

 – surface polarizability of the -particle along the rod space diagonal projected on the  axis, ;(𝛼𝑖,𝑦,𝑑𝑠)𝑌𝑎 𝑖 𝑦 𝑚3

 – surface polarizability of the -particle along the rod space diagonal projected on the  axis, .(𝛼𝑖,𝑧,𝑑𝑠)𝑌𝑎 𝑖 𝑧 𝑚3

For other shapes, like cubes or triangles, the fractions vary considerably, and frequently, numerical methods need to be 
used.

1.2. Temperature distributions
The temperature increase is generally calculated thanks to the standard mass, momenta, and energy balance equations 
[13]’[14]:

    (20)

∂
∂𝑡{ 𝜌

𝜌�⃗�
𝜌𝑒} + 𝑑𝑖𝑣{ 𝜌�⃗�

𝜌�⃗�⨂�⃗�
𝜌𝑒�⃗� } + 𝑑𝑖𝑣{ 0

𝑝 �⃡�
𝑝�⃗�} = 𝑑𝑖𝑣{ 0

�⃡�
�⃡�·�⃗� + �⃗�} + { 0

𝜌·𝑆�⃗�
�̌�𝑒

𝑇𝑂𝑇}
 (21)

�⃡� = 𝑔𝑟𝑎𝑑(𝑋𝑡) ‒
2
3

𝜇𝐼�⃡� �⃡� + 2𝜇�⃡� = 𝑔𝑟𝑎𝑑(𝑑�⃡�
𝑑𝑇

·𝑔𝑟𝑎𝑑(𝑇)) ‒
2
3

𝜇𝐼�⃡� �⃡� + 2𝜇�⃡�

where:
 – time, s;𝑡

 – density (here: water), ;𝜌 𝑘𝑔·𝑚 ‒ 3

 – specific energy, ;𝑒 𝐽· 𝑘𝑔 ‒ 1

 – specific heat capacity, 𝑐𝑝 𝐽· 𝑘𝑔 ‒ 1· 𝐾 ‒ 1

 – velocity of the fluid, ;�⃗� 𝑚·𝑠 ‒ 1

 – Fourier heat flux;�⃗�

total momentum flux, �⃡�  – 𝑃𝑎;

 – unit tensor;�⃡�

 – pressure, ;𝑝 𝑃𝑎

 – diffusive momentum flux; Pa𝑋𝑡

 – surface tension gradient,  , here: ;

𝑑�⃡�
𝑑𝑇 𝑁·𝑚 ‒ 1·𝐾 ‒ 1 ‒ 0.05263 𝑚𝑁·𝑚 ‒ 1·𝐾 ‒ 1

 – temperature, ;𝑇 𝐾

 – momentum source term, here: gravity;𝑆�⃗�

 – total source of energy, ;�̌�𝑒
𝑇𝑂𝑇 = 𝑆𝑀

𝑒 + 𝑆𝑁𝑃
𝑒 𝑊·𝑚 ‒ 3

 – source of energy for continuous materials, ;�̌�𝑀
𝑒 𝑊·𝑚 ‒ 3

– source of energy for nanoparticles, .�̌�𝑁𝑃
𝑒 𝑊·𝑚 ‒ 3

Curved geometries, however, also require including the radiative transport equation that is generally calculated using 
the DOM model. Due to the high-simulation time, however, this work assumes another model that has been proposed 
in [11]’[12]’[15]. The presence of AuNRs is here treated as a boundary condition, and the whole absorbed part of the 
irradiation is directly responsible for the heat conversion rate, following the formulas:



𝑆𝑁𝑃
𝑒 =

𝑁

∑
𝑖 = 1

𝜎𝑎𝑏𝑠𝑖·𝐼𝑎𝑏𝑠𝑖 = 𝜉·
𝑁

∑
𝑖

(𝑤𝑖·𝐶𝑎𝑏𝑠𝑖)·𝐼𝑎𝑏𝑠𝑖 =

= 𝜉·
𝑁

∑
𝑖

(𝑤𝑖·𝐶𝑎𝑏𝑠𝑖)·𝐼𝑜·(1 ‒ 𝑅𝐶𝑇𝐴𝐵)·(1 ‒ 𝑅𝑔)·(1 ‒ exp (( ‒ 𝜉·
𝑁

∑
𝑖

(𝑤𝑖·𝐶𝑎𝑏𝑠𝑖)·𝑙𝑝 ‒ ℎ))) (22)

𝐼𝑜 = (𝐽𝑜(𝜆)·𝑚𝑎𝑥(𝐼𝑜)) ·exp ( ‒ 2·( �⃗�
𝑑𝐵

)2) (23)

𝑅𝐶𝑇𝐴𝐵 = (𝑛𝐶𝑇𝐴𝐵 ‒ 𝑛ℎ(𝜆)

𝑛𝐶𝑇𝐴𝐵 + 𝑛ℎ(𝜆))2 (24)

𝑅𝑔 =
( |𝜀𝑔| + 𝑖𝑚 (𝜀𝑔)

2
‒ 𝑛𝐶𝑇𝐴𝐵)2 + ( |𝜀𝑔| ‒ 𝑖𝑚 (𝜀𝑔)

2 )2

( |𝜀𝑔| + 𝑖𝑚 (𝜀𝑔)
2

+ 𝑛𝐶𝑇𝐴𝐵)2 + ( |𝜀𝑔| ‒ 𝑖𝑚 (𝜀𝑔)
2 )2

(25)

where:

 – absorbed part of irradiation, ;𝐼𝑎𝑏𝑠𝑖 𝑊·𝑚 ‒ 2

 – incident irradiation, ;𝐼𝑜 𝑊·𝑚 ‒ 2

 – incident irradiation function in reduced-to-one units, ;𝐽𝑜(𝜆) 𝑊·𝑚 ‒ 2

 – reflected coefficient of the CTAB compound, - ;𝑅𝐶𝑇𝐴𝐵

 – reflected coefficient of the gold material, - ;𝑅𝑔

 –  penetration depth, here: 26.0  ;𝑙𝑝 ‒ ℎ 𝑛𝑚

 – output power of laser,  ;𝑃 𝑊

 – beam size,  ;𝑑𝐵 𝑚

 – radial distance,  ;�⃗� 𝑚

 – refractive index of the CTAB compound, - ;𝑛𝐶𝑇𝐴𝐵

 – wavelength function of either the 15%-humid-air or NOA-61 refractive index, - ;𝑛ℎ(𝜆)

 – complex function of the electrical permittivity of gold, - ;𝜀𝑔 ≡ 𝜀1

 – absolute value of the electrical permittivity of gold, - .|𝜀𝑔|

This is the situation when the AuNRs are irradiated with a monochromatic light source. The problem appears if the 
incident irradiation characterizes an asymmetrical spectra distribution (e.g. solar light). In this paper, the authors 

suggest that the heat generation rate would be transformed into  and which are described as:𝑆𝑁𝑃
𝑒 →�̆�𝑁𝑃

𝑒 𝑆𝑀
𝑒 →�̌�𝑀

𝑒

�̆�𝑁𝑃
𝑒 =

𝜆𝑘

∫
𝜆𝑜

𝑆𝑁𝑃
𝑒 𝑑𝜆

𝜆𝑘

∫
𝜆𝑜

𝑑𝜆

(26)



�̆�𝑀
𝑒 =

𝜆𝑘

∫
𝜆𝑜

𝑆𝑀
𝑒 𝑑𝜆

𝜆𝑘

∫
𝜆𝑜

𝑑𝜆

(27)

where:

 – lower limit of the wavelength interval, here: 250 nm;𝜆𝑜

 – upper limit of the wavelength interval, here: 1100 nm.𝜆𝑘

Using discrete numbers, the integral from the formulas (26) and (27) become a sum from  to .𝜆𝑜 𝜆𝑘

As long as the  is treated as a thin surface with the AuNRs as inclusions, the situation is significantly different for 𝑙𝑝 ‒ ℎ

the continuous materials where the beam is diminished as the depth increases. Therefore, the  is then transformed 𝑙𝑝 ‒ ℎ

into the function of the light ray line, yielding the considered system [12]’[15]:

𝑆𝑀
𝑒 = 𝜎𝑎𝑏𝑠𝑀

·𝐼𝑎𝑏𝑠𝑀
= 𝜎𝑎𝑏𝑠𝑀

(𝜆)·𝐼𝑜(𝜆)·(1 ‒ 𝑅𝑀(𝜆))·(1 ‒ exp ( ‒ 𝜎𝑎𝑏𝑠𝑀
(𝜆)·𝑑𝑀) (28)

𝜎𝑎𝑏𝑠𝑀
(𝜆) =

4𝜋·𝑖𝑚(𝑛𝑀(𝜆))
𝜆

(29)

𝑅𝑀(𝜆) =
(𝑟𝑒(𝑛𝑀(𝜆)) ‒ 𝑛𝑎𝑖𝑟(𝜆))2 + (𝑖𝑚(𝑛𝑀(𝜆)))2

(𝑟𝑒(𝑛𝑀(𝜆)) + 𝑛𝑎𝑖𝑟(𝜆))2 + (𝑖𝑚(𝑛𝑀(𝜆)))2 (30)

where:

 – wavelength function of the absorption coefficient of a material,  ;
𝜎𝑎𝑏𝑠𝑀

(𝜆) 𝑚 ‒ 1

 – the part of the irradiation that has been absorbed by a material, ;
𝐼𝑎𝑏𝑠𝑀 𝑊·𝑚 ‒ 2

 – spectral distribution of the light source’s power density, ;𝐼𝑜(𝜆) 𝑊·𝑚 ‒ 2

 – wavelength function of the reflection coefficient of a material, - ;𝑅𝑀(𝜆)

 – optical thickness in the considered material, ;𝑑𝑀 𝑚

 – wavelength function of the refractive index of a material, - ;𝑛𝑀(𝜆)

 – real part of a parameter𝑟𝑒

All the abovementioned equations have been investigated and adjusted to the working system. Moreover, the 
appropriate boundary conditions have to be specified, which is deliberated in Section 2. 



2. Calculation methods and boundary conditions
Both optical cross-sections and temperature distributions are determined using two different techniques. Nevertheless, 
the absorption coefficient and the properties of the surrounding medium do the lion’s share in heat and mass transfer. 
The absorption cross sections are calculated analytically based on the Rayleigh-Drude approximation following the 
formulas (1) – (19) and (21) – (30). All calculations have been examined in the Wolfram.Mathematica software (version 
11.3.0). The nanoparticle size and shape distributions are included for  dimension groups based 𝑁 = 130 𝑥 130 = 16900
on the Gaussian curves where the maximum value has been located at the 15 x 15 x 55 nm size. The material parameters 
are specified in table 2.1 in the range from 250 to 1100 nm. 

Table 2.1. Assumed parameters for absorption spectra calculations
Parameters Assumed value References
NPs size,  x  x 𝑑𝑠1 𝑑𝑠1 𝑑𝑙1 15 x 15 x 55 nm -

Thickness of the capping agent (CTAB), 𝑑𝑠2 4 nm -
Average NR – NR distance 142 nm -
Nanoparticles density, 𝜉 8.67 · 1021 m-3 -

air (humidity – 15%) 1.046601 [16]

NOA-61 1.559351 [17]
Fluid refractive index, 𝑛ℎ

water 1.332001 [18]

Refractive index of PE platform, 𝑛𝑠𝑢𝑟 1.508061 [10]’[19]’[20]

Refractive index of borosilicate glass, 𝑛𝑔𝑙𝑎𝑠𝑠 1.516301 [21]

Refractive index of CTAB compound, 𝑛𝐶𝑇𝐴𝐵 1.44000 [22]

 𝑟𝑒 - 9.348321Electrical permittivity,  𝜀𝑔 = 𝜀1

 𝑖𝑚 1.331901
[5]

On the other hand, the temperature distributions are determined using CFD methods and algorithms following the 
formulas (20) – (21). The calculations have been performed via Ansys.Fluent software (version 22.1) using the Tryton 
supercomputer of the TASK resources of 72 cores (Intel®Xeon®Processor E5 v3 @ 2,3 GHz). 

Figure SI 3 demonstrates the geometry reproduced based on the experiments, whereas meshes and their 
specifications are revealed in Appendix A. The simulations are run using the SIMPLE algorithm and the 
second-order scheme for the general (20) equations. The control parameters are established at 0.5, except 
pressure and density, whose values equal 0.3. Before the simulations start, materials properties and 
boundary conditions have been specified for the considered system, which is highlighted in Tables 2.2 and 
2.3. Due to the lack of some parameters about the NOA-61 glue, epoxy resin has been adjusted.

Figure SI 3. Scheme of the reproduced geometry applied in the simulations (scale has not been saved)

1 At standard conditions:  =600 nm, =1 atm =24oC𝜆  𝑝 𝑇𝑜



Figure SI 4. Intensity spectrum distribution  of the applied lamp𝐽𝑜(𝜆)

Table 2.2. Material properties in the considered simulations

Material
Density 

(𝑘𝑔·𝑚 ‒ 3)
Specific heat 

capacity 
(𝐽·𝑘𝑔 ‒ 1·𝐾 ‒ 1)

Thermal 
conductivity 
coefficient 

(𝑊·𝑚 ‒ 1·𝐾 ‒ 1)

Dynamic viscosity
(𝑃𝑎·𝑠) References

Borosilicate 
glass 2124.9 779.74

0.9245251
+  0.0004777689·𝑇 +

9.178795·10 ‒ 7·𝑇2
- [21]’[23]

Gold 19320 129.81 317 - [24]’[25]

Air 352.965·𝑇 ‒ 1 1006.43
0.004204762

+  7.242857·10 ‒ 5·𝑇
7.29·10 ‒ 6 +  4.0·10 ‒ 8·𝑇[26]’[27]’[28]

NOA61 1231 1100 0.50 0.30 [17]’[29]

Table 2.3. Specified boundary conditions in the considered simulations

No. Material
Type of 

boundary 
conditions

Details Formulas & 
equations References

(1)
Bottom 

borosilicate 
glass

Mixed

𝑇𝑜 = 297.15 𝐾 (75.20𝑜
 𝐹)

ℎ𝑔𝑙𝑎𝑠𝑠 ‒ 𝑎𝑖𝑟 = 13.6 𝑊·𝑚 ‒ 2·𝐾 ‒ 1

𝑑𝑀 = 0.001 𝑚
𝑚𝑎𝑥(𝐼𝑜) = 286000 𝑊·𝑚 ‒ 2 
max (𝑆𝑀

𝑒 ) = 347.75 𝑊·𝑚 ‒ 3

𝑑𝐵 = 0.004 𝑚

(15)
(22) – (25) [21]’[23]

(2) Air Outlet 
(Neumann)

𝑇𝑜 = 297.15 𝐾 (75.20𝑜
 𝐹)

𝑣𝑜 = 0 (15) -

(3) NOA61 Neumann
𝑇𝑜 = 297.15 𝐾 (75.20𝑜

 𝐹)
�̇� = 0 𝑊·𝑚 ‒ 2 

(15) -

(4)
Top 

borosilicate
glass 

Mixed

𝑇𝑜 = 297.15 𝐾 (75.20𝑜
 𝐹)

ℎ𝑔𝑙𝑎𝑠𝑠 ‒ 𝑎𝑖𝑟 = 13.6 𝑊·𝑚 ‒ 2·𝐾 ‒ 1

𝑑𝑀 = 0.001 𝑚
𝑚𝑎𝑥(𝐼𝑜) = 286000 𝑊·𝑚 ‒ 2 

max (𝑆𝑀
𝑒 ) = 1.2057·106 𝑊·𝑚 ‒ 3

𝑑𝐵 = 0.004 𝑚

(15)
(21) – (24) [21]’[23]

(5) Gold surface Neumann 𝑇𝑜 = 297.15 𝐾 (75.20𝑜
 𝐹) (1) – (20) [2]’[11]’[12]’[24]



𝑙𝑝 ‒ ℎ = 26.0 𝑛𝑚
𝑚𝑎𝑥(𝐼𝑜) = 286000 𝑊·𝑚 ‒ 2 

𝑚𝑎𝑥(�̆�𝑁𝑃
𝑒 ) = 1.0778·1011 𝑊·𝑚 ‒ 3

𝑑𝐵 = 0.004 𝑚
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Appendix A: Mesh and time independent tests

This part demonstrates the mesh and time independence procedure based on Richardson’s and Roache’s 

extrapolations. The first one allows the determination of the continuum values of a selected quantity   and highlights 𝑓𝑒𝑥𝑡

the relative and fractional error between the different mesh or timestep results. Moreover, this approach is dedicated 
to lower-order discrete values. The methodology is bases on the formula[30]:

(A1)𝑓𝑒𝑥𝑡 = 𝑓ℎ = 0 + 𝑔1·ℎ + 𝑔2·ℎ3 + …

where:
 – relative error between two sets/values of data, - ;𝜖

 – value for the 1st , 2nd, 3rd set of data,𝑓1,2,3,…

 – continuum value as if the mesh or time size equals zero)  𝑓ℎ = 0

 – constant or a function of the selected parameter that is other than 𝑔1,2,3,… ℎ

For the second-order scheme that has been utilized in this work the continuum value  yields:𝑓ℎ = 0

𝑓ℎ = 0 = 𝑓1 +
𝑓2 ‒ 𝑓1

(ℎ2

ℎ1
)𝛿 ‒ 1 (A2)

where:

 – 1st , 2nd , 3rd … grid or time size;ℎ1,2,3,…

 – rank of accuracy, here: 𝛿 𝛿 = 2

Accordingly, the equation (A2) is transformed for three meshes into:

𝑓𝑒𝑥𝑡 =
2𝑛·𝑓1 ‒ 𝑓2

2𝑛 ‒ 1
(A3)

𝑛 = log2 (𝑓2 ‒ 𝑓3

𝑓1 ‒ 𝑓2
) (A4)

which allows the investigated value to be extrapolated with a specified error, e.g., the relative  and fractional error 𝜖

 between two sets of data that follow:𝐸1

𝜖 =
𝑓2 ‒ 𝑓1

𝑓1
(A5)

𝐸1 =
𝜖

(ℎ2

ℎ1
)𝛿 ‒ 1

(A6)

Furthermore, Roache’s approach[31] has introduced the grid convergence index (GCI) methodology that indicates how 
far the error may change as the mesh is finer, which for Richardson extrapolation is defined by the GCI parameter:



𝐺𝐶𝐼(𝑓𝑖𝑛𝑒) = 𝐹𝑠·|𝐸1| = 𝐹𝑠·
|𝜖|

(ℎ2

ℎ1
)𝛿 ‒ 1

(A7)

where:

 – factor of safety, here: 1.25𝐹𝑠

In this work, three meshes are consumed so as to provide the mesh and timestep to be independent. Figure A01 reveals 
the discretization used, whereas Table TA01 highlights the details of these grids. As the quantity value, two parameters 
have been selected – the maximum temperature in the whole system (max) and top glass (4) mean temperature (mean) 
have been utilized for the Richardson extrapolation and GCI methodology, both in spatial and time regimes.  The 
obtained comparison are reported in Figure A01 , whereas the error data are included in Table TA02.



Figure A01. Three meshes that have been utilized in the simulations from the top view

Table TA01. Details of the applied meshes
Parameter Mesh 1 Mesh 2 Mesh 3
Mesh size 0.166667 𝑚𝑚 0.083333 𝑚𝑚 0.055556 𝑚𝑚
Maximum 

aspect ratio
40.0695 Cells with maximum aspect ratio are located in the bottom glass (1) or in the NOA - 61 zone (3)

2
228.0307 228.7873

Mean volume cell 1.717776·10 ‒ 11 𝑚3 1.717163·10 ‒ 11 𝑚3 1.717050·10 ‒ 11 𝑚3

2 Cells with maximum aspect ratio are located in the bottom glass (1) or in the NOA-61 zone (3)



Orthogonal quality 1.0 1.0 1.0
Number of cells 1314332 3875328 7867008

Table TA02. Richardson- and Roache-extrapolated parameters after 30 seconds of irradiation
Extrapolate error Mesh 1 – Mesh 2 Mesh 2 – Mesh 3 – 𝑡𝑠1 𝑡𝑠2  – 𝑡𝑠2 𝑡𝑠3

max 0.050368645 % 0.009325662 % 0.088021221 % 0.073893865 %|𝜖| mean 0.069894595 % 0.020863796 % 0.017556023 % 0.010783518 %
max 322.43526114 𝐾 322.43161627 𝐾 322.43212863 𝐾 322.43291446 𝐾𝑓ℎ = 0 mean 315.49611408 𝐾 315.48450273 𝐾 315.48696179 𝐾 315.48766655 𝐾
max 0.020986936 % 0.009325662 % 0.036675509 % 0.017593777 %𝐺𝐶𝐼(𝑓𝑖𝑛𝑒) mean 0.029122748 % 0.020863796 % 0.007315010 % 0.002567504 %
max 322.4303321 𝐾 322.44180391 𝐾𝑓𝑒𝑥𝑡 mean 315.4821112 𝐾 315.48891530 𝐾

Since the spatial errors decrease below 1% significantly, the second mesh is consumed to repeat the procedure for three 

timesteps – ,  and .  Likewise, the obtained comparison implies the time errors at the 𝑡𝑠1 = 1.0 𝑡𝑠2 = 0.5 𝑡𝑠3 = 0.2 𝑚𝑠

maximum 0.1% level. Under the abovementioned results from the figures and the tables A01 and TA01,TA02, the 0.5-
ms-second-mesh case has been declared to be spatial and time independent and is shifted to the experimental 
confrontations. 


