Electronic Supplementary Information

Fe(III) incorporated porphyrin-based conjugated organic polymer as peroxidase-mimic for sensitive determination of glucose and H₂O₂

Samanka Narayan Bhaduri, Debojit Ghosh, Sauvik Chatterjee, Rima Biswas, Asim Bhaumik,* Papu Biswas*

Fig. S1 Survey spectra of Fe-DMP-POR

Fig. S2 (a) PXRD and (b) FT-IR of Fe-DMP-POR after treatment with 3 m NaOH, 3 M HCl and boiling water

Fig. S3 (a) Optimisation of pH and (b) optimisation of temperature for peroxidase like activity

Catalyst	Substrate	K _m	V _{max}	Reference
		(mM)	(10 ⁻⁸ Ms ⁻¹)	
Fe-DMP-POR	TMB	0.14	1.44	This work
	H_2O_2	16.9	4.50	
HRP	TMB	100	5.71	1
	H_2O_2	142	1.33	
Au/OMC	TMB	0.015	1.50	2
	H_2O_2	38.11	4.00	
CePO ₄ -CeO ₂ composite nanorods	TMB	0.236	8.78	3
	H_2O_2	4.76	29.79	
Bi ₂ Te ₃ -Au ₅	TMB	0.261	2.15	4
	H_2O_2	11.36	4.48	

Table S1. Comparison of kinetic parameters like K_{m} and V_{max} with other reported materials

Table S2. Comparisons of different glucose sensing parameters

Catalyst	Linear range (mM)	LOD (µM)	Reference
Fe-DMP-POR	0-0.150	4.84	This work
PVP-MoS ₂	1 10	220	5
nanoparticles	1-10	320	5
NiCo ₂ S ₄	0.02.1	6.24	6
Microflowers	0.02-1	0.24	0
MoS ₂ nanoflakes	0.1-1	33.51	7.
Bi ₂ Te ₃ -Au _{0.5}	0-4.5	380	4
CePO ₄ -CeO ₂	0-0.1	4.1	3
Core-shell Cu/Au	0.02.0.670	15	0
NPs	0.02-0.070	15	8
Fe ₃ O ₄ @Au–Pt	0.00005-0.140	0.025	9

Fig. S4 UV spectra of solutions containing different monosaccharides and glucose

Table S3. Detection of glucose in blood serum samples

Sample No.	Spiked glucose/mM	Recovered glucose/mM	RSD/%	Recovery/%
1	0.05	0.051	3.1	102
2	0.075	0.074	2.5	98
3	0.1	0.103	2.8	103
4	0.15	0.16	3	106

Fig. S5 Optimisation of NaOH concentration for H₂O₂ detection

Modified	Linear range	Sensitivity	Limit of	Reference
electrodes	(mM)	$(\mu A \text{ cm}^{-2} \text{ m} M^{-1})$	detection (μM)	
Pd–TiO ₂	1-20	550	23	10
Ag_{dahlia}	upto 15 mM	330	2.2	11
CuS/RGO	0.001-1	7.96	0.3	12
α-Fe ₂ O ₃	0.050-1.340	24	5	13
Ag-MnO ₂ - MWCNTs/CGE	upto 10.4 mM	82.5	1.7	14
RGO/Fe ₃ O ₄	upto 6 mM	688	3.2	15
Fe-DMP-POR	0.005-2	947.67	3.16	This work

 Table S4. Comparison of different parameters for amperometric peroxide detection with other materials.

Fig. S6 (a) Repeatability study, (b) Fabrication reproducibility (five electrode), (c) long term stability study of Fe-DMP-POR in 0.1 M NaOH and H_2O_2 and (d) selectivity study of Fe-DMP-POR for uric acid glucose, cysteine and ascorbic acid at -0.78 V in 0.1 M NaOH

REFERENCES

- 1 P. Nagvenkar and A. Gedanken, ACS Appl. Mater. Interfaces, 2016, 8, 22301–22308.
- R. Banerjee, D. Ghosh, J. Satra, A. B. Ghosh, D. Singha, M. Nandi and P. Biswas, ACS Omega, 2019, 4, 16360–16371.
- 3 G. Vinothkumar, A. I. Lalitha and K. Suresh Babu, *Inorg. Chem.*, 2018, 58, 349–358.
- 4 S. S. Kulkarni, C. T. Wu, V. Sridhar, V. K. Ponnusamy and S. Chattopadhyay, *ACS Appl. Nano Mater.*, 2022, **5**, 15563–15573.
- 5 J. Yu, X. Ma, W. Yin and Z. Gu, *RSC Adv.*, 2016, 6, 81174–81183.
- Z. Huang, W. He, H. Shen, G. Han, H. Wang, P. Su, J. Song and Y. Yang, *Talanta*, 2021, 230, 122337.
- 7 J. Yu, D. Ma, L. Mei, Q. Gao, W. Yin, X. Zhang, L. Yan, Z. Gu, X. Ma and Y. Zhao, J. Mater. Chem. B, 2018, 6, 487–498.
- 8 R. Sun, R. Lv, Y. Zhang, T. Du, Y. Li, L. Chen and Y. Qi, RSC Adv., 2022, 12, 21875–21884.
- 9 X. Feng, H. Fu, Z. Bai, P. Li, X. Song and X. Hu, New J. Chem., 2022, 46, 239–249.
- 10 Q. Yi, F. Niu and W. Yu, *Thin Solid Films*, 2011, **519**, 3155–3161.
- R. M. Sarhan, G. A. El-Nagar, A. Abouserie and C. Roth, ACS Sustain. Chem. Eng., 2019, 7, 4335–4342.
- 12 Y. J. Yang, W. Li and X. Wu, *Electrochim. Acta*, 2014, **123**, 260–267.
- S. Majumder, B. Saha, S. Dey, R. Mondal, S. Kumar and S. Banerjee, *RSC Adv.*, 2016, 6, 59907–59918.
- 14 Y. Han, J. Zheng and S. Dong, *Electrochim. Acta*, 2013, 90, 35–43.
- 15 Y. Ye, T. Kong, X. Yu, Y. Wu, K. Zhang and X. Wang, Talanta, 2012, 89, 417-421.