Supporting Information

Functionalized nanozyme with drug loading for enhanced tumor combination treatment of catalytic therapy and chemotherapy

Qian Song,^{‡a} Bin Chi,^{‡b} Haiqing Gao,^{‡a} Junke Wang,^a MiaomiaoWu,^c Yi Xu,^a Yingxi Wang,^a Zushun Xu,^a Ling Li,^{*a} Jing Wang,^{*b} Run Zhang^{*c}

^a Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China. Email: lingli@hubu.edu.cn

^b Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Email: jjwinflower@126.com
c Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of

Queensland, St Lucia, QLD 4072, Australia. Email: r.zhang@uq.edu.au

[‡] These authors contributed equally to this work.

Chemodynamic performance

To clarify the catalytic activity of Zr/Ce-MOFs and Zr/Ce-MOFs/DOX/MnO₂, MB was applied as an indicator to monitor \cdot OH production. MB can be degraded by \cdot OH produced from the disproportionation reaction between H₂O₂ and Zr/Ce-MOFs and Zr/Ce-MOFs/DOX/MnO₂, then assayed at 665 nm on a UV spectrometer. According to the time-dependent absorbance curve, all the corresponding average initial velocities of absorbance were calculated. Next, these average initial velocities were transformed to initial velocities (V₀) of \cdot OH production via the Beer-Lambert law (eqn (1)), and then plotted as curves against the corresponding concentrations and fitted by the Michaelis-Menten equation (eqn (3)) to obtain the Michaelis-Menten constant (K_M) and the maximum velocity (Vmax).

$$V_0 = (V_{max} \times [S]) / (K_M + [S])$$
 (2)

$$1/V_0 = (K_M/V_{max}) \times (1/[S]) + (1/V_{max})$$
 (3)

[S]-the concentration of H₂O₂

Fig. S1. TEM images of (a)Zr/Ce-MOFs, (b) Zr/Ce-MOFs/DOX and (c) Zr/Ce-MOFs/DOX/MnO₂.

Fig. S2. (a) DLS and (b) Zeta potential of Zr/Ce-MOFs, Zr/Ce-MOFs/DOX and Zr/Ce-MOFs/DOX/MnO₂. The error bar is the standard deviation of experimental data for three times.

Figure S3. DLS size distribution of Zr/Ce-MOFs/DOX/MnO₂ in PBS of different pH.

Figure S4. Nitrogen adsorption curve of Zr/Ce-MOFs.

Fig. S5. The drug loading of different particle. The error bar is the standard deviation of experimental data for three times.

Fig. S6. The drug release of $Zr/Ce-MOFs/DOX/MnO_2$ at different pH values (pH = 7.4 and 5.8) and GSH concentrations (0 and 10 mM).

Fig. S7. (a) The degradation rate of MB of different materials; (b) EIS Nyquist plots of different materials. The error bar is the standard deviation of experimental data for three times.

Fig. S8. Cell viability of Zr/Ce-MOFs, Zr/Ce-MOFs/DOX and Zr/Ce-MOFs/DOX/MnO₂. The error bar is the standard deviation of experimental data for three times.

Fig. S9. (a) T_1 -weighted images of tumor after injection with Zr/Ce-MOFs/DOX/MnO₂ at different time points; (b) The MRI signal at the injection site. The error bar is the standard deviation of experimental data for three times.