Supporting information

A Fluorescent Quaternary Phosphonium Main-Chain Type Polymer: An Opportunity to Fabricate Functional Materials with Excellent Antibacterial Activity and Bacterial Imaging Capability

Jiawei Lv,^a Saicuo Wang,^b Chunxuan Qi,^c Muheman Li,^a Yuqing Sun,^a Yuan Yang,^a Cheng Zeng,^a Richao Shen,^a Hengchang Ma^{*a}

^a Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University. Lanzhou 730070, P.R. China.

^b China Agricultural Vet. Bio. Science and Technology Co., Ltd., Lanzhou 730046, P.R. China.

^c AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P.R. China.

Table of Contents

1. ¹ H and ¹³ C NMR Spectra of Compounds	3
2. ³¹ P NMR Spectra of Compounds	15
3. UV-vis and PL Spectra of Compounds	18
4. FT-IR spectrum of Compounds	24
5. AIE test of two polymers	25
6. Wettability test	26
7. SEM images	27
8. EDS images	28
9. Antibacterial activity test	29
10. Bacterial imaging	30
11. MIC data and the chemical structures of representative antibacterial agents	32
12. Density functional theory (DFT) calculations	34
13. Cytotoxicity Cell imaging.	35
14. Cell imaging	36

1. ¹H and ¹³C NMR Spectra of Compounds.

Figure S1. ¹H NMR spectrum of TPE-2CH₃ measured in CDCl₃ at room temperature.

Figure S2. ¹³C NMR spectrum of TPE-2CH₃ measured in CDCl₃ at room temperature.

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Chemical shift (ppm)

Figure S3. ¹H NMR spectrum of TPE-CH₂-Br measured in CDCl₃ at room temperature.

S5

Figure S4. ¹³C NMR spectrum of TPE-CH₂-Br measured in CDCl₃ at room temperature.

Figure S5. ¹H NMR spectrum of TPE-2CH₂Br measured in CDCl₃ at room temperature.

Figure S6. ¹³C NMR spectrum of TPE-2CH₂Br measured in CDCl₃ at room temperature.

Figure S7. ¹H NMR spectrum of TPE-2N⁺ measured in CDCl₃ at room temperature.

Figure S8. ¹³C NMR spectrum of TPE-2N⁺ measured in CDCl₃ at room temperature.

Figure S9. ¹H NMR spectrum of TPE-2P⁺ measured in CDCl₃ at room temperature.

Figure S10. ¹³C NMR spectrum of TPE-2P⁺ measured in CDCl₃ at room temperature.

Figure S11. ¹H NMR spectrum of TPE-Ammonium polymer measured in DMSO- d_6 at room temperature.

Figure S12. ¹H NMR spectrum of TPE-Phosphonium polymer measured in CDCl₃ at room temperature.

2. ³¹P NMR Spectra of Compounds

Figure S13. ³¹P NMR spectrum of DPPH measured in CDCl₃ at room

temperature.

Figure S14. ³¹P NMR spectrum of TPE-2P⁺ measured in CDCl₃ at room

temperature.

Figure S15. ³¹P NMR spectrum of TPE-Phosphonium polymer measured

in CDCl₃ at room temperature.

3. UV-vis and PL Spectra of Compounds

Figure S16. Normalized UV-*vis* absorption spectra of TPE-2N⁺ in DMF, DMSO, EtOH and MeOH.

Figure S17. Normalized UV-*vis* absorption spectra of TPE-2P⁺ in DMF, DMSO, EtOH and MeOH.

Figure S18. Photoluminescence spectra of TPE-2N⁺ and TPE-2P⁺ in solid

state. ($\lambda_{ex} = 316$ nm).

Figure S19. Normalized UV-*vis* absorption spectra of TPE-Ammonium polymer in DMF, DMSO, EtOH and MeOH.

Figure S20. Normalized UV-*vis* absorption spectra of TPE-Phosphonium polymer in DMF, DMSO, EtOH, MeOH and DCM.

Figure S21. Photoluminescence spectra of TPE-Ammonium polymer and TPE-Phosphonium polymer in solid state. ($\lambda_{ex} = 316$ nm).

4. FT-IR spectrum of Compounds

Figure S22. FT-IR spectra of TPE- $2N^+$, TPE- $2P^+$ and polymers (KBr tablet).

5. AIE test of two polymers

Figure S23. Photoluminescence spectra of (A) TPE-Ammonium polymer and (B) TPE-Phosphonium polymer at different ratios of water/ethanol. Inset: photographs of TPE-Ammonium polymer in ethanol and in water/ethanol mixtures when the addition of water was 95%, respectively, taken under illumination at 365 nm; (C) Plots of the maximum emission intensities of TPE-Phosphonium and TPE-Ammonium polymer with V_{water} : V_{EtOH} from 0 to 0.95. (Conc.: 1 mg/mL).

6. Wettability test

Figure S24. Contact angle of (A) TPE-2N⁺, (B) TPE-2P⁺, (C) TPE-Ammonium polymer and (D) TPE-Phosphonium polymer.

7. SEM images

Figure S25. SEM images of the xerogel of TPE-Phosphonium polymer with CNCs. Scale bar: $2 \mu m$.

8. EDS images

Figure S26. SEM images of the scanned area (A). Electron probe micro-analysis of xerogel tested by Energy Dispersive Spectrometer (EDS) (B). Scale bar: 5 μm.

9. Antibacterial activity test

Figure S27. Antibacterial activities against *E. coli* (left) and *S. aureus* (right) of TPE-Phosphonium polymer (Conc.: 0.02 mg/mL).

10. Bacterial imaging

Figure S28. Fluorescence images of *E. coli* incubated with 0.2 mg/mL⁻¹ of TPE-Phosphonium polymer for 12 h, PI for 12h and merged. The bottom images were enlarged. Excitation wavelengths: TPE-Phosphonium polymer for 300 - 400 nm and PI for 440 - 550 nm. (scale bar = 25μ m).

Figure S29. Fluorescence microscope images of *S. aureus* and *E. coli* incubated with TPE-Phosphonium polymer (0.2 mg/mL⁻¹) for 12 h. Excitation wavelengths: 300 - 400 nm. (scale bar = 25 µm).

11. MIC data and the chemical structures of representative antibacterial agents

Samples	MIC (µg/mL)	
	S. aureus	E. coli
[Im][C] [*] (Polym. Chem-UK. 2018 , 9, 4611-4616)	460	440
[Qa][Cl]* (Polym. Chem-UK. 2018, 9, 4611-4616)	748	654
[DABCO][Cl][Br]*(Polym. Chem-UK. 2018, 9, 4611-4616)	2685	2350
S-P[Im][Cl]-L [#] (Polym. Chem-UK. 2018, 9, 4611-4616)	320	265
S-P[Im][Cl] [#] (Polym. Chem-UK. 2018, 9, 4611-4616)	275	235
S-P[Qa][Cl]-L [#] (Polym. Chem-UK. 2018, 9, 4611-4616)	365	285
S-P[Qa][Cl] [#] (Polym. Chem-UK. 2018, 9, 4611-4616)	257	220
S-P[DABCO][Cl][Br]-L [#] (Polym. Chem-UK. 2018, 9, 4611-4616)	887	787
S-P[DABCO][Cl][Br] [#] (Polym. Chem-UK. 2018, 9, 4611-4616)	550	497
Q-PGEDA-OP/TPE# (Chem. Mater. 2018, 30, 1782-1790)	15.5	125
Q-PGEDA-OA [#] (Chem. Mater. 2018, 30, 1782-1790)	31.5	500
P4VP-ManTPE [#] (<i>Biomacromolecules</i> 2021 , 22, 2224-2232)	15.63	1000
P4VP-BPTPE [#] (Biomacromolecules 2021 , 22, 2224-2232)	7.81	500
M-P[Im][Br]& (Polym. Chem-UK. 2018, 9, 4611-4616)	52	26
S-P[Qa][Cl] [#] (Polym. Chem-UK. 2018, 9, 4611-4616)	120	58
M-P[Qa][Br] & (Polym. Chem-UK. 2018, 9, 4611-4616)	200	180
Diamine polymer 1 ^{&} (Biomaterials 2017, 127, 36-48.)	3.9	7.8
Diamine polymer 2 ^{&} (Biomaterials 2017, 127, 36-48.)	7.8	31.3
Diamine polymer 4 ^{&} (Biomaterials 2017, 127, 36-48.)	3.9	3.9
Diamine polymer 1a ^{&} (Biomaterials 2017, 127, 36-48.)	1.95	3.9
Diamine polymer 4a ^{&} (Biomaterials 2017, 127, 36-48.)	1.95	3.9
Diamine polymer 5 ^{&} (Biomaterials 2017, 127, 36-48.)	3.9	3.9
Diamine polymer 6 ^{&} (Biomaterials 2017, 127, 36-48.)	3.9	7.8
TPA-Ammonium polymer ^{&} (Our work)	1.95	3.90
TPE-Phosphonium polymer ^{&} (Our work)	0.24	0.98

Table S1 MIC data from previous works and our work.

*Small Cationic compound. #Side-chain polymer. &Main-chain polymer.

12. Density functional theory (DFT) calculations

Figure **S30**. The chemical structure used for density functional theory (DFT) calculations (Upper left), and the optimized configuration (Lower left), The ESP diagram of TPE-Phosphonium polymer's molecular fragment (Right).

13. Cytotoxicity

Figure S31. HeLa cells were incubated with TPE-Phosphonium polymer for 24h at different concentration: 0, 5, 10, 20 and 40 μ g/mL.

14. Cell imaging

Figure S32. Fluorescence images of HeLa cells incubated with 20 μ g/mL of TPE-Phosphonium polymer for 12 h (Excitation wavelength: 405 nm), the bright field images and the overlay images.