Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration

Jialu Li,^{‡a} Chengheng Wu,^{‡a,b} Mingze Zeng,^a Yusheng Zhang,^a Dan Wei,^a Jing Sun,^a Hongsong Fan^{*a}

^a National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan,

China

E-mail: hsfan@scu.edu.cn

^b Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China

‡ These authors contributed equally to this work.

Stimulation type	Biomaterial	Feature	Stimulation parameter	Cell/animal response	Ref.
	PVDF BZT-BCT/PVDF KNN/PLA	A nanopillar array fabricated by hot- pressing	US, 5 min, 2 times a day, 300- 500 W	Neuron-like differentiation of rBMSCs	1
		Thin films fabricated by electrospinning of the composite containing PVDF and BZT-BCT nanowires	US, 1 MHz, pulse width 5 ms, pulse interval 100 ms, acoustic pressure 150 kPa	The generation of CMAPs and the twitching of limbs	2
Piezoelectric		A biodegradable 3D multichannel nanofiber scaffold	US: (1) <i>In vitro</i> : 20 min, 1 MHz, 0- 150 kPa; (2) <i>In vivo</i> : 20 min every 2 days, lasted for 4 weeks	 Neuronal differentiation of NSCs; Neuro-regeneration and functional recovery of SCI rats 	3
stimulation	BN	BN nanotubes prepared by annealing can be internalized by cells	US, 20 W, 40 kHz, for 5 s, 4 times a day for 9 days	Promoted neurite outgrowth of PC 12 cells	4
	BTNPs	Tetragonal BTNPs	US, 1 MHz, 0.1-0.8 W/cm ²	US induced calcium transient in SH-SY5Y cells	5
	BTNP-PDA-BNN6	US-driven release of NO, allowing the BBB penetration	US: (1) <i>In vitro</i> :2.2 MHz, 10 s, 0.4 W/cm ² , (2) <i>In vivo</i> : 1.5 MHz, 462.4 W/cm ² , duty cycle: 10%, pulse repetition frequency: 10 Hz, 66.4 W/cm ²	 Increased Ca²⁺ influx and dopamine release of SH- SY5Y cells; Alleviated symptoms of the mice with PD 	6

 $\label{eq:tables} \textbf{Table S1} \text{ Overview of the functional materials for wireless physical stimulation.}$

ME stimulation	CoFe ₂ O ₄ @BaTiO ₃	Core-shell MENPs can be stereotactically injected into deep brain	 (1) In vitro: 225 mT (DC MF), 6 mT, 140 Hz (AC MF); (2) In vivo: 220 mT (DC MF), 6 mT, 140 Hz (AC MF), 180 s 	 Induced Ca²⁺ transient f SH-SY5Y; Increased expression of c-Fos <i>in vivo</i> and controlled mouse behavior 	7
	FO@BTO/AHA hydrogel	Core-shell MENPs were combined with biomimetic hydrogel with features of native neural ECM	Pulsed MF (13 mT, 60 Hz, duty cycle of 50%), 0.5 h per day	 (1) Promoted neurogenesis of PC 12 cells <i>in vitro</i>; (2) facilitated neuro- regeneration in SCI rats 	8
	GO/CFO/PVDF	ME nanofiber films prepared by electrospinning	EMFs, 1 mT, 50 Hz, 8 h/day for 21 days	Neuron-like differentiation of MSCs	9
	Metglas/PVDF or PZT	The nanogenerators were implanted into the STN of rats with PD, ensuring ME stimulation in freely moving rats	AMF, 1.5 mT, 1 min, 200 Hz, biphasic pulses	Decreased rotation rate of the rats with PD	10
	Metaglas/PZT	The ME film can be implanted directly and delivered through a percutaneous catheter to big animals	AMF, <1 mT, 3 V, 1.5 ms pulse width monophasic, 1-10 Hz	Induced CMAPs of rats and pigs	11
Optoelectrical stimulation	Silicon	Nanoporous/non-porous silicon heterojunctions fabricated by metal- free etching	532 nm laser: 10 ms, 8-68 mW/mm ² ; 808 nm laser:10 ms, 15-209 mW/mm ²	<i>In vivo</i> sciatic nerve simulation induced the generation of APs and leg displacement of rats	12
	Silicon	Silicon structures, including nanowires, membranes and meshes for multiscale stimulation <i>in vitro</i> and <i>in</i> <i>vivo</i>	 (1) For cells: 592 nm, 14.4 mW, 237 nm spot size, 1 ms; (2) For brain slice: 473 nm, 1 ms, 2 mW, 57 μm spot size; (3) <i>In vivo</i> photo-stimulation: 473 nm, 4-5 mW, 216 μm spot size 	 (1) Induced intracellular Ca²⁺ influx in both DRG and glial cells; (2) Generation of excitatory postsynaptic currents in brain slices; (3) Evoked small ipsilateral forelimb movements 	13

	РЗНТ	Photovoltaic layer prepared by spin- coating	 (1) <i>In vitro</i>: 532 nm, 20 ms, 15 mW/mm², 1-20 Hz; (2) <i>In vivo</i>: 532 nm, 10 ms, 4 mW/mm² 	 Induced the generation of APs in primary neurons; Restored light-responses in blind retinas 	14
	P3HT/collagen or collagen/hyaluronan hydrogels	Hydrophilic P3HT NPs were integrated into biomimetic hydrogels to create a neural interface and a 3D biomimetic stem cell niche	530 nm pulsed light, 6 mW/cm ² , 500 ms duration, 1 Hz, 30 min/12 h	 (1) Promoted growth of primary neurons; (2) Enhanced neuronal differentiation of BMSCs 	15
Magetothermal stimulation	MnFe ₂ O ₄	The MnFe ₂ O ₄ NPs (d=6 nm) were conjugated with streptavidin for specific targeting	RF magnetic field (40 MHz, 8.4 G, 30 s)	TRPV1 opening and activation of APs in HEK 293 cells;	16
	Fe ₃ O ₄	MNPs were modified with PEG shell	AMF, <i>f</i> =500 kHz, H _o =15 kA/m	 (1) Evoked correlated trains of APs in neurons <i>in vitro</i>; (2) Increased expression of c-Fos <i>in vivo</i> 	17
	Co-Mn-Ferrite	Core-shell MNPs	AMF: (1) <i>In vitro</i> : 412.5 kHz, 22.4 kA/m, 5 s; (2) <i>In vivo</i> : 570 kHz, 7.5 kA/m, 1 min	 (1) Elicited AP firing in neurons; (2) Increased angular velocity of movement in a mouse model 	18
Photothermal stimulation	Gold	Gold nanostars prepared by a modified seedless and surfactant free method	785 nm laser, 3-15 mW/mm ² , 10 s,	Inhibition of neuronal activity	19
	Graphene	A nanowire-templated 3D fuzzy graphene	405 nm laser, 1.2 ms pulse duration, 1.45-3.02 mW, 1-20 Hz	Highly controlled activation of APs in DRG neurons	20
	PDA/collagen	PDA NPs were integrated with collagen to prepare a photothermal 3D foam	808 nm laser, 6 mW/mm ² , 10- 30 s duration	Suppressed spike rate of neurons	21

	Gold	Gold nanorods	980 nm laser, 1 ms duration, 0.159-1.046 J/cm ² ,	Elicited compound nerve APs of rat sciatic nerves	22
Photoacoustic stimulation	ZnO/epoxy @ graphite/epoxy	A fiber-optoacoustic convertor with tip composed of ZnO/epoxy @ graphite/epoxy double-layer structure used for photoacoustic stimulation	1030 nm laser, 3 ns pulse width, 100 μJ, 3.6 kHz, 200 ms	 (1) Induced Ca²⁺ transient in primary neurons; (2) Induced neural activation in mouse brain 	23
	CNT/PDMS	CNT/PDMS act as the light absorption/thermal expansion layer	1030 nm laser, 3 ns pulse width, 11.4 mW, 1.7 kHz, 1 and 50 ms duration	Activation of a single neuron or subcellular structures	24
	Polystyrene-block-poly (acryl acid)	The photoacoustic nanotransducers can be conjugated with targeting antibodies	1030 nm laser, 3 ns pulse width, 3.3 kHz, 3 ms, 2.1 mJ/cm ² (<i>in vitro</i>), 21 mJ/cm ² (<i>in vivo</i>)	 (1) Transient activation of neurons; (2) Induced local field potential in brain of mice 	25
	PANIP-ES@AOT	The nanovesicles were prepared by HRP/H ₂ O ₂ -trigged polymerization on AOT vesicles	 (1) <i>In vitro</i>: 1064 nm, 40 μJ, 10 ms pulse width, (2) <i>In vivo</i>: 1064 nm, 40 μJ, 10 s pulse width, 20 Hz, 10 s 	 (1) Ca²⁺ transient in DRG neurons; (2) Increased neuronal firing rates in mouse hippocampus and motor cortex and induced fast motion of mice 	26
	CNT/silk	Photoacoustic scaffold was prepared by embedding PEG-functionalized CNTs into silk	1030 nm laser, 3 ns pulse width, 1.7 kHz, 8.8-23.5 μJ, 5 ms duration, every 2 min within total duration of 1 h	Induced Ca ²⁺ transient, promoted neurite outgrowth of DRG neurons and increased expression of BDNF and NGF	27
Optogenetic stimulation	NaYF ₄ :Yb ³⁺ /Tm ³⁺ @ NaYF ₄ (UCNP)/PCL	The UCNPs were combined with collagen-modified PCL scaffold by electrospinning and electrospraying	980 nm laser, 800 mW/cm ² , 500 ms pulse width, 1 Hz, 10 min/12 h;	Promoted neurite extension of PC 12 cells expressing CatCh	28

	NaYF4:Yb/Tm@SiO2	Silica was used to decorate UCNP to optimize the biocompatibility and long-term utility	 980 nm laser: (1) <i>In vitro</i>: 0.35-8.22 W/mm², 10-50 Hz; (2) <i>In vivo</i>: 15-ms pulses at 20 Hz, 700 mW peak power (3) <i>In vivo</i>: 15-ms pulses at 8 Hz, 3.0 W peak power, 360 mW average power 	 (1) Evoked spikes in neurons expression ChR2 <i>in</i> <i>vitro</i>; (2) Increased expression of c-Fos and release of dopamine <i>in vivo</i>; (3) Induced hippocampal local field potential <i>in vivo</i> 	29
	NaYF ₄ :Yb/Er@ NaYF ₄ (UCNP)/polypropylene (PP)	The UCNP was combine with PP and implanted at the spinal cord of mice	980 nm laser, 20 mW/mm ² , 0.5 and 1 Hz, 50 ms pulse width,	Induced muscular activity in ChR2-transfected mice and inhibited movement	30
Magnetomechanical stimulation	Zinc doped iron oxide (Zn _{0.4} Fe _{2.6} O ₄)	Octahedral $Zn_{0.4}Fe_{2.6}O_4$ NPs assemble into m-Torquer that is used to generate torque force when exposed to a rotating magnetic field generated by a circular magnet array (CMA)	Rotating CMA: 0.5 s pulse duration, 0.5 Hz, 90 degree turn	 Induced Ca²⁺ influx in neurons; In vivo stimulation activated mouse motility 	31
	Fe ₃ O ₄	Magnetite nanodiscs were produced by reducing hematite to magnetite	Magnetic field, 1-5 Hz, 7-28 mT, 4 pulses of 10 s at intervals of 30s.	Increased Ca ²⁺ influx in HEK-293 cells expressing TRPV4	32
	Mercaptan-functionalized magnetic particles/HA hydrogel	3D magnetic hydrogel composed of hyaluronan with similar biochemical and biophysical properties to brain tissue	Magnetomechanical stimulation (calculated): 0.136 Hz, 0.15 to 1 µN, 30 min/day, 4 days	Increased Ca ²⁺ influx in DRG neurons	33
	Zn _{0.4} Fe _{2.6} O ₄ @SiO ₂ @pNiP MAm hydrogel nanoparticles	Zn _{0.4} Fe _{2.6} O ₄ converts magnetic anisotropic energy to thermal energy to induce the pNiPMAm contraction	AMF, 500 kHz at 500 Oe, 30 s ON/2 min OFF cycle for 15 times	Activation of the Notch signaling in Notch1-U2OS cells	34

References

1. L. Liang, C. Sun, R. Zhang, S. Han, J. Wang, N. Ren and H. Liu, *Nano Energy*, 2021, **90**, 106634.

2. P. Chen, P. Wu, X. Wan, Q. Wang, C. Xu, M. Yang, J. Feng, B. Hu and Z. Luo, *Nano Energy*, 2021, 86, 106123.

3. P. Chen, C. Xu, P. Wu, K. Liu, F. Chen, Y. Chen, H. Dai and Z. Luo, ACS Nano, 2022, 16, 16513-16528.

4. G. Ciofani, S. Danti, D. D'Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui, S. Berrettini, M. Petrini, V. Mattoli and A. Menciassi, *ACS Nano*, 2010, 4, 6267-6277.

5. A. Marino, S. Arai, Y. Hou, E. Sinibaldi, M. Pellegrino, Y.-T. Chang, B. Mazzolai, V. Mattoli, M. Suzuki and G. Ciofani, *ACS Nano*, 2015, **9**, 7678-7689.

6. T. Kim, H. J. Kim, W. Choi, Y. M. Lee, J. H. Pyo, J. Lee, J. Kim, J. Kim, J.-H. Kim, C. Kim and W. J. Kim, *Nat. Biomed. Eng.*, 2023, 7, 149-163.

7. K. L. Kozielski, A. Jahanshahi, H. B. Gilbert, Y. Yu, Ö. Erin, D. Francisco, F. Alosaimi, Y. Temel and M. Sitti, Sci. Adv., 7, eabc4189.

8. Y. Zhang, S. Chen, Z. Xiao, X. Liu, C. Wu, K. Wu, A. Liu, D. Wei, J. Sun, L. Zhou and H. Fan, Adv. Healthcare Mater., 2021, 10, 2100695.

9. E. Esmaeili, M. Soleimani, M. A. Ghiass, S. Hatamie, S. Vakilian, M. S. Zomorrod, N. Sadeghzadeh, M. Vossoughi and S. Hosseinzadeh, *J. Cell. Physiol.*, 2019, **234**, 13617-13628.

10. A. Singer, S. Dutta, E. Lewis, Z. Chen, J. C. Chen, N. Verma, B. Avants, A. K. Feldman, J. O'Malley, M. Beierlein, C. Kemere and J. T. Robinson, *Neuron*, 2020, **107**, 631-643.e635.

11. J. C. Chen, P. Kan, Z. Yu, F. Alrashdan, R. Garcia, A. Singer, C. S. E. Lai, B. Avants, S. Crosby, Z. Li, B. Wang, M. M. Felicella, A. Robledo, A. V. Peterchev, S. M. Goetz, J. D. Hartgerink, S. A. Sheth, K. Yang and J. T. Robinson, *Nat. Biomed. Eng.*, 2022, **6**, 706-716.

12. A. Prominski, J. Shi, P. Li, J. Yue, Y. Lin, J. Park, B. Tian and M. Y. Rotenberg, Nat. Mater., 2022, 21, 647-655.

13. Y. Jiang, X. Li, B. Liu, J. Yi, Y. Fang, F. Shi, X. Gao, E. Sudzilovsky, R. Parameswaran, K. Koehler, V. Nair, J. Yue, K. Guo, Y. Fang, H.-M. Tsai, G. Freyermuth, R. C. S. Wong, C.-M. Kao, C.-T. Chen, A. W. Nicholls, X. Wu, G. M. G. Shepherd and B. Tian, *Nat. Biomed. Eng.*, 2018, **2**, 508-521.

14. D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani and F. Benfenati, *Nat. Photonics*, 2013, 7, 400-406.

15. C. Wu, Y. Pu, Y. Zhang, X. Liu, Z. Qiao, N. Xin, T. Zhou, S. Chen, M. Zeng, J. Tang, J. Pi, D. Wei, J. Sun, F. Luo and H. Fan, *Adv. Healthcare Mater.*, 2022, **11**, 2201255.

- 16. H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey and A. Pralle, Nat. Nanotechnol., 2010, 5, 602-606.
- 17. R. Chen, G. Romero, M. G. Christiansen, A. Mohr and P. Anikeeva, Science, 2015, 347, 1477-1480.
- 18. R. Munshi, S. M. Qadri, Q. Zhang, I. Castellanos Rubio, P. del Pino and A. Pralle, *eLife*, 2017, 6, e27069.
- 19. J. W. Lee, H. Jung, H. H. Cho, J. H. Lee and Y. Nam, *Biomaterials*, 2018, 153, 59-69.
- 20. S. K. Rastogi, R. Garg, M. G. Scopelliti, B. I. Pinto, J. E. Hartung, S. Kim, C. G. E. Murphey, N. Johnson, D. San Roman, F. Bezanilla, J.
- F. Cahoon, M. S. Gold, M. Chamanzar and T. Cohen-Karni, Proc. Natl. Acad. Sci., 2020, 117, 13339-13349.
 - 21. H. Gholami Derami, P. Gupta, K.-C. Weng, A. Seth, R. Gupta, J. R. Silva, B. Raman and S. Singamaneni, Adv. Mater., 2021, 33, 2008809.
 - 22. K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun and S. J. Kim, Small, 2014, 10, 3853-3857.
 - 23. Y. Jiang, H. J. Lee, L. Lan, H.-a. Tseng, C. Yang, H.-Y. Man, X. Han and J.-X. Cheng, Nat. Commun., 2020, 11, 881.
 - 24. L. Shi, Y. Jiang, F. R. Fernandez, G. Chen, L. Lan, H.-Y. Man, J. A. White, J.-X. Cheng and C. Yang, Light Sci. Appl., 2021, 10, 143.
- 25. Y. Jiang, Y. Huang, X. Luo, J. Wu, H. Zong, L. Shi, R. Cheng, Y. Zhu, S. Jiang, L. Lan, X. Jia, J. Mei, H.-Y. Man, J.-X. Cheng and C. Yang, *Matter*, 2021, 4, 654-674.
 - 26. Y. Zhang, D. Yang, J. Nie, J. Dai, H. Wu, J. C. Zheng, F. Zhang and Y. Fang, Adv. Mater., 2023, 35, 2208601.
 - 27. N. Zheng, V. Fitzpatrick, R. Cheng, L. Shi, D. L. Kaplan and C. Yang, ACS Nano, 2022, 16, 2292-2305.
 - 28. C. Wu, B. Su, N. Xin, J. Tang, J. Xiao, H. Luo, D. Wei, F. Luo, J. Sun and H. Fan, J. Mater. Chem. B, 2023, 11, 430-440.
- 29. S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S.
- Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu and T. J. McHugh, Science, 2018, 359, 679-684.
 - 30. Y. Wang, K. Xie, H. Yue, X. Chen, X. Luo, Q. Liao, M. Liu, F. Wang and P. Shi, Nanoscale, 2020, 12, 2406-2414.
 - 31. J.-u. Lee, W. Shin, Y. Lim, J. Kim, W. R. Kim, H. Kim, J.-H. Lee and J. Cheon, *Nat. Mater.*, 2021, 20, 1029-1036.
- 32. D. Gregurec, A. W. Senko, A. Chuvilin, P. D. Reddy, A. Sankararaman, D. Rosenfeld, P.-H. Chiang, F. Garcia, I. Tafel, G. Varnavides, E. Ciocan and P. Anikeeva, *ACS Nano*, 2020, **14**, 8036-8045.
 - 33. A. Tay, A. Sohrabi, K. Poole, S. Seidlits and D. Di Carlo, *Adv. Mater.*, 2018, **30**, 1800927.
 - 34. S. Jeong, W. Shin, M. Park, J.-u. Lee, Y. Lim, K. Noh, J.-H. Lee, Y.-w. Jun, M. Kwak and J. Cheon, Nano Lett., 2023, 23, 5227-5235.