Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Supporting information

Molecular Engineering to Enhance the Reactive Oxygen Species

Generation of AIEgens and Exploration of Their Versatile

Applications

Weidong Yin,^a Jianqing Li,^b Yucheng Ma,^a Longjiang Xing,^a Zeduan Chen,^a Bo Liu,^a Yanping Huo,^a Zujin Zhao,*^b and Shaomin Ji*^a

Light Industry and Chemical Engineering College, Guangdong University of Technology, Guangzhou, Guangdong 510006, China E-mail: smji@gdut.edu.cn

Contents

1.	Experimental details	3
	•	
2.	¹ H NMR and ¹³ C NMR Spectra of compounds	4
3.	The date of excited state level, photophysical and photodynamic	8
4.	Study on AIE properties of compounds	9
5.	Photostability and solvation effect of compounds	10
6.	Study on ROS generation of compounds	10
7.	Cell imaging and cell viability test of compounds	16
8.	Mechanoluminescent properties of compounds	16
9.	Single crystal date of TPE-Pvs-B	18

1. Experimental details

Scheme S1. Synthetic routes of TPE-Py, TPE-Pys-M, TPE-Pys-B and TPE-Pys-BP.

2. ${}^{1}H$ NMR and ${}^{13}C$ NMR Spectra of compounds

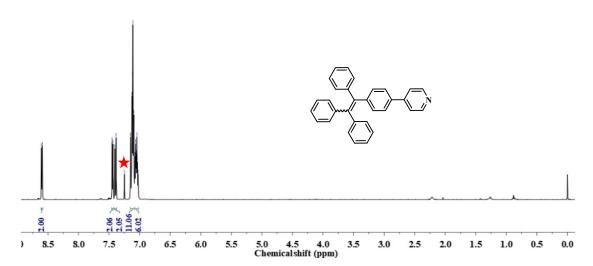


Figure S1. ¹H NMR Spectra of TPE-Py.

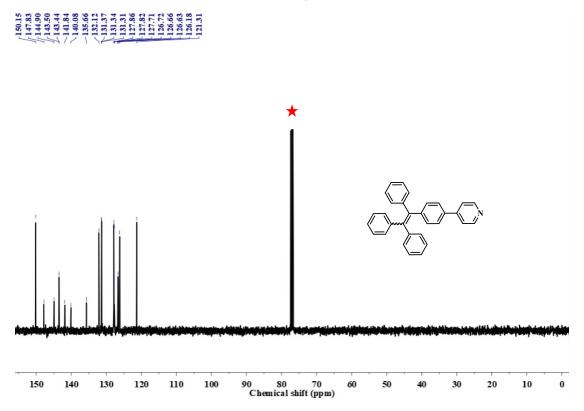


Figure S2. ¹³C NMR Spectra of TPE-Py.

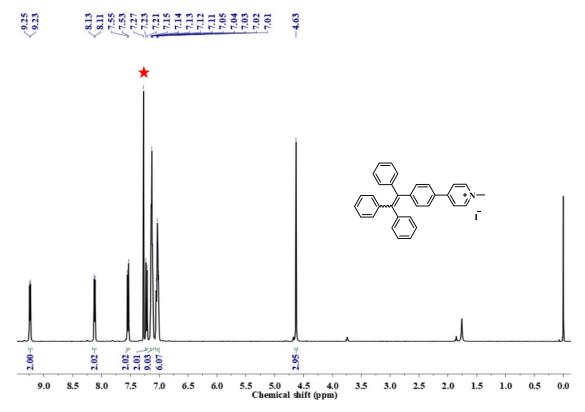


Figure S3. ¹H NMR Spectra of TPE-Pys-M.

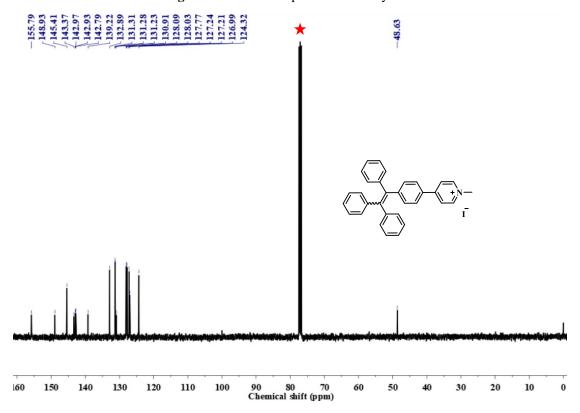


Figure S4. ¹³C NMR Spectra of TPE-Pys-M.

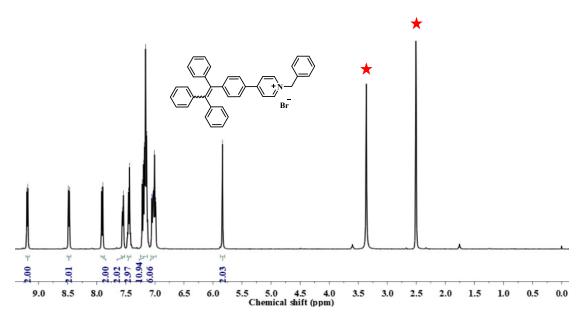


Figure S5. ¹H NMR Spectra of TPE-Pys-B.

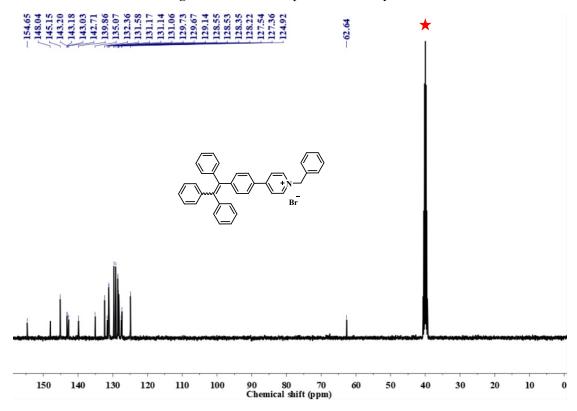


Figure S6. ¹³C NMR Spectra of TPE-Pys-B.

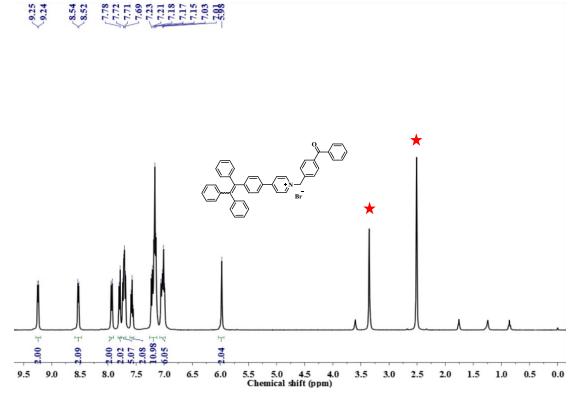


Figure S7. ¹H NMR Spectra of TPE-Pys-BP.

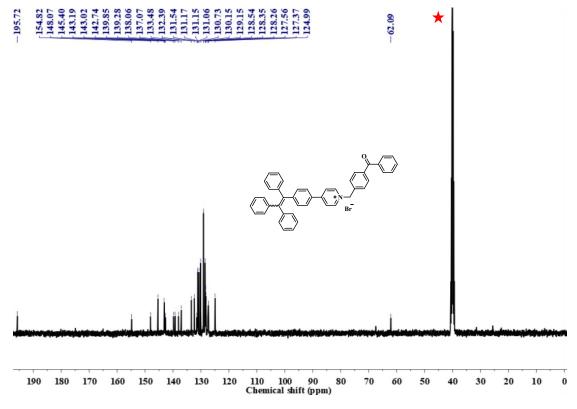
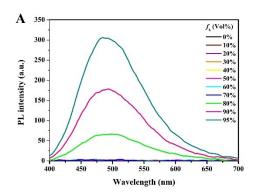


Figure S8. ¹³C NMR Spectra of TPE-Pys-BP.

3. The date of excited state level, photophysical and photodynamic


Table S1 Calculated energy of the singlet (S) and triplet (T) excited states

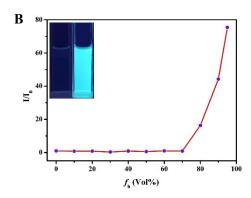
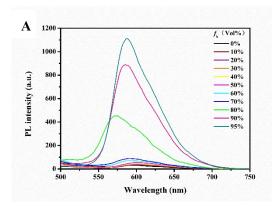
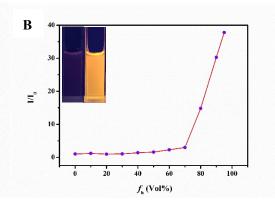
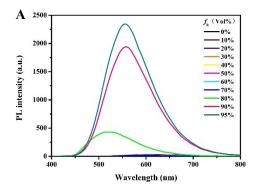
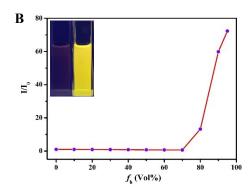

Compounds	TPE-Py	TPE-Pys-M TPE-Pys-l		TPE-Pys-BP	
S_1	4.0995	2.5787	2.7070	2.6851	
S_2	4.8827	3.7811	3.9276	3.7325	
S_3	4.9418	3.9111	4.0600	3.9054	
T_1	2.4938	1.8970	2.0066	1.9924	
T_2	3.1823	2.7836	2.8155	2.8120	
T_3	3.4274	3.2128	3.3068	2.9833	
T_4	3.4915	3.3799	3.4062	3.2943	
T ₅	3.7499	3.4621	3.5109	3.3382	
T_6	3.9144	3.5062	3.5626	3.4035	

Table S2. Photophysical and photodynamic data of the compounds


Compounds	λ _{abs} (nm)	λ _{ex} (nm)	λ _{em} (nm) solid	Φ (%)	ε (M ⁻¹ cm ⁻¹)	τ (ns)	ROS yield (RB=1)	$\Delta E_{ ext{L-H}}$ (eV)	SOC constant
TPE-Py	325	370	453	50.27	33168	2.33	0.018	3.582	0.293
TPE-Pys-M	366	452	562	13.15	39528	3.71	0.022	4.071	0.267
TPE-Pys-B	372	450	524	65.47	40291	3.57	0.024	4.232	0.272
TPE-Pys-BP	374	415	525	68.92	46830	2.63	0.818	4.209	0.446


4. Study on AIE properties of compounds




Figure S9. (A, B) PL spectra and the plot of the emission maximum of TPE-Py in dichloromethane and n-hexane mixture with different n-hexane fractions (0-95%). Inset: fluorescent photographs of TPE-Py in pure dichloromethane and in dichloromethane and n-hexane mixtures when the addition of n-hexane was 95%.

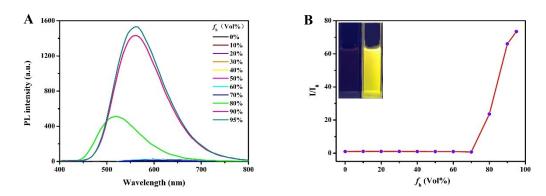


Figure S10. (A, B) PL spectra and the plot of the emission maximum of TPE-Pys-M in dichloromethane and *n*-hexane mixture with different *n*-hexane fractions (0-95%). Inset: fluorescent photographs of TPE-Pys-M in pure dichloromethane and in dichloromethane and *n*-hexane mixtures when the addition of *n*-hexane was 95%.

Figure S11. (A, B) PL spectra and the plot of the emission maximum of TPE-Pys-B in dichloromethane and n-hexane mixture with different n-hexane fractions (0-95%). Inset: fluorescent photographs of TPE-Pys-B in pure dichloromethane and in dichloromethane and n-hexane mixtures when the addition of n-hexane was 95%.

Figure S12. (A, B) PL spectra and the plot of the emission maximum of TPE-Pys-BP in dichloromethane and n-hexane mixture with different n-hexane fractions (0-95%). Inset: fluorescent photographs of TPE-Pys-BP in pure dichloromethane and in dichloromethane and n-hexane mixtures when the addition of n-hexane was 95%.

5. Photostability and solvation effect of compounds

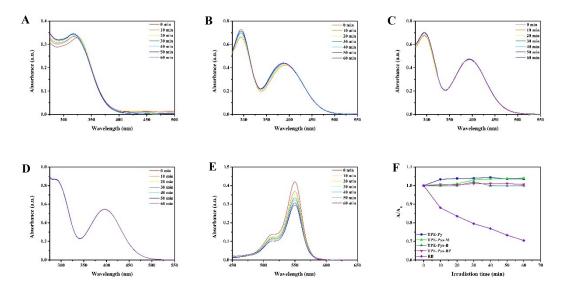


Figure S13. Photostability test of TPE-Py, TPE-Pys-M, TPE-Pys-B, TPE-Pys-BP and RB upon white light.

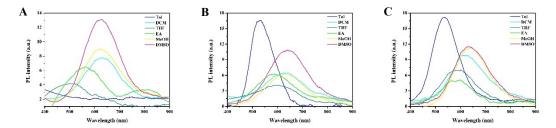
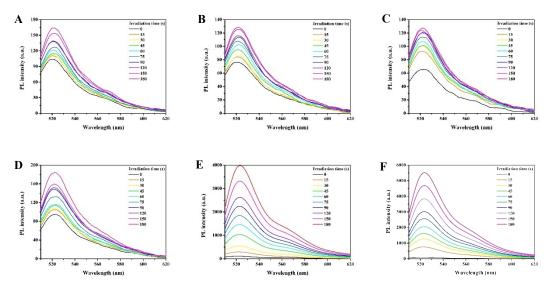
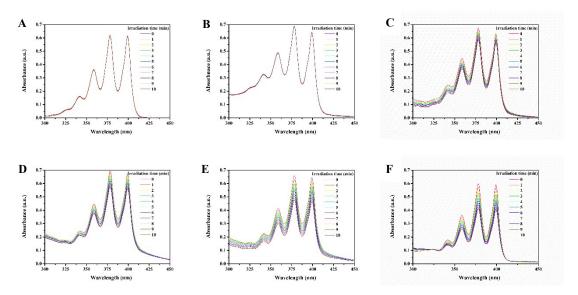
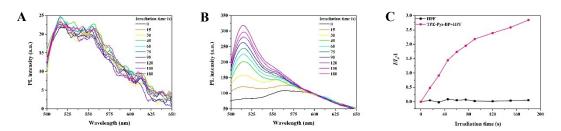
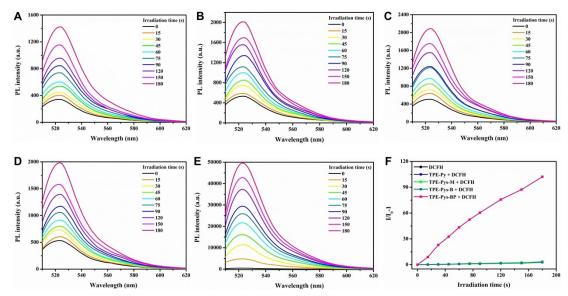
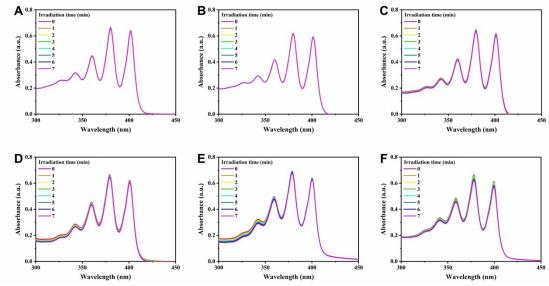




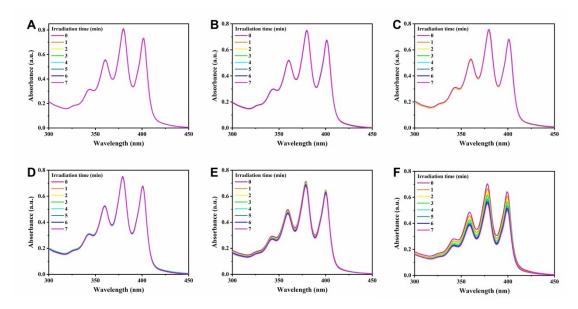
Figure S14. PL spectra of TPE-Pys-M, TPE-Pys-B and TPE-Pys-BP in different solvents.

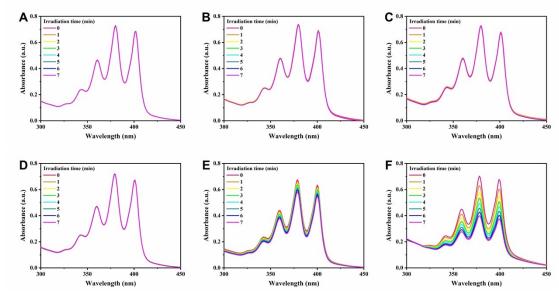
6. Study on ROS generation of compounds

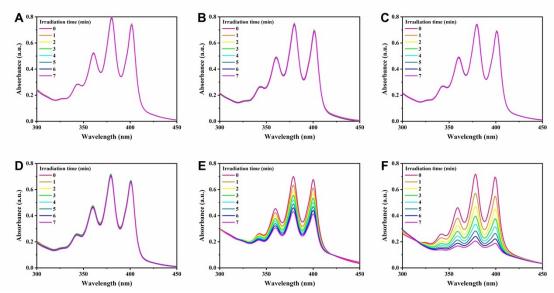
Figure S15. ROS generation of blank, TPE-Py, TPE-Pys-M, TPE-Pys-B, TPE-Pys-BP and RB (1 μ M) upon exposure to white light using DCFH (10 μ M) as an indicator.

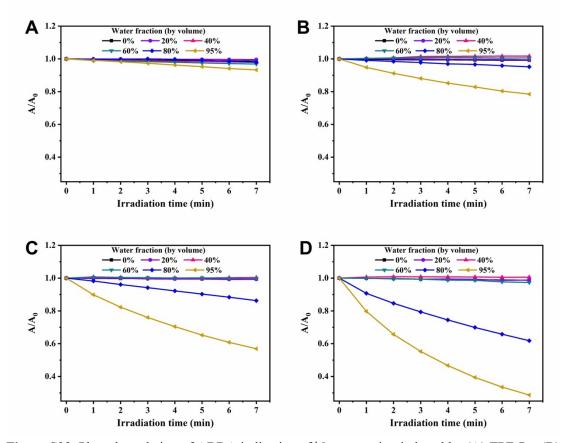
Figure S16. Absorption of ABDA (50 μ M, 1O_2 probe) in water in the presence of blank, TPE-Py, TPE-Pys-M, TPE-Pys-B, TPE-Pys-BP and RB (10 μ M) under white light irradiation for different time.


Figure S17. The PL spectra of HPF (5 μ M, OH· probe) in the presence of 1 μ M TPE-Pys-BP in PBS upon white light irradiation with 150 mW cm⁻² for different times.


Figure S18. ROS generation of blank, TPE-Py, TPE-Pys-M, TPE-Pys-B, and TPE-Pys-BP (1 μ M) upon exposure to white light (25 mW/cm²) using DCFH (10 μ M) as an indicator.


Figure S19. The absorbance spectra of ABDA (50 μ M, $^{1}O_{2}$ probe) at 380 nm in the presence of TPE-Py (10 μ M) in mixtures of DMSO and H₂O with different H₂O fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (25 W/cm²).


Figure S20. The absorbance spectra of ABDA (50 μ M, $^{1}O_{2}$ probe) at 380 nm in the presence of TPE-Pys-M (10 μ M) in mixtures of DMSO and H₂O with different H₂O fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (25 W/cm²).

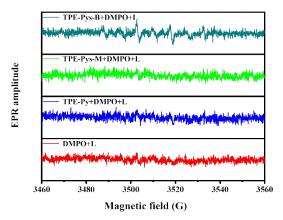

Figure S21. The absorbance spectra of ABDA (50 μ M, $^{1}O_{2}$ probe) at 380 nm in the presence of TPE-Pys-B (10 μ M) in mixtures of DMSO and H₂O with different H₂O fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (25 W/cm²).

Figure S22. The absorbance spectra of ABDA (50 μ M, $^{1}O_{2}$ probe) at 380 nm in the presence of TPE-Pys-BP (10 μ M) in mixtures of DMSO and H₂O with different H₂O fractions (0%, 20%, 40%, 60%, 80% and 95%) upon white-light irradiation (25 W/cm²).

Figure S23. Photodegradation of ABDA indicative of ${}^{1}O_{2}$ generation induced by (A) TPE-Py, (B) TPE-Pys-M, (C) TPE-Pys-B and (D) TPE-Pys-BP respectively in DMSO/H₂O mixtures with different H₂O fractions (0%, 20%, 40%, 60%, 80% and 95%) under white light irradiation (25 mW/cm²).

Figure S24. EPR signals of DMPO (25 mM) in the presence TPE-Py, TPE-Pys-M and TPE-Pys-B in H_2O , with/without white light irradiation (150 mW cm⁻²) for 5 min.

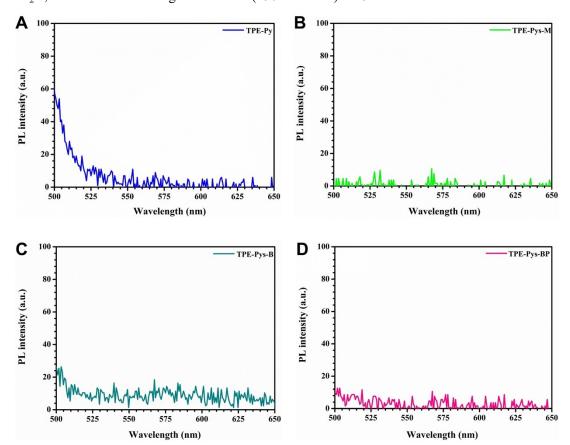


Figure. S25 PL spectra of TPE-Py, TPE-Pys-M, TPE-Pys-B and TPE-Pys-BP (conc.: 1 μ M) in PBS solution (λ_{ex} = 488 nm).

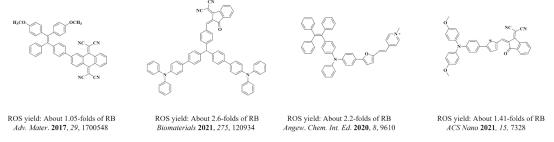


Chart 1. The ROS yield of some reported AIE photosensitizers.

7. Cell imaging and cell viability test of compounds

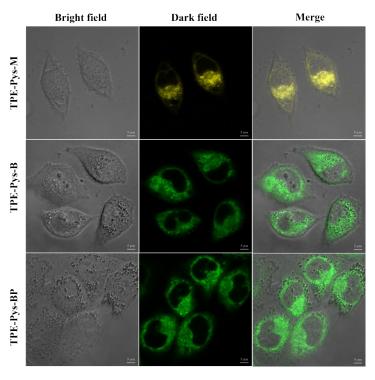


Figure S26. Fluorescence images of HeLa cells stained with 10 μ M TPE-Pys-M, TPE-Pys-B and TPE-Pys-BP for 4 h respectively.



Figure S27. live/dead staining assay of Hela cells after various treatments.

8. Mechanoluminescent properties of compounds

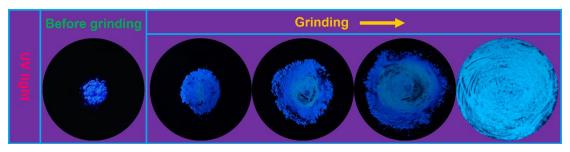
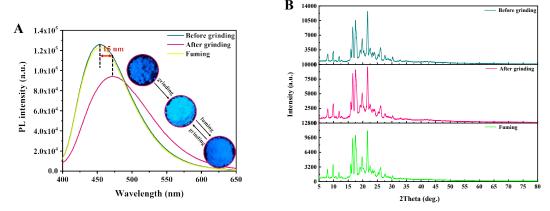



Figure S28. The photos of TPE-Py in agate mortar during grinding under illumination at 365 nm.

Figure S29. (A) Change in the emission spectrum of TPE-Py powder by the grinding, fuming and crystallizing process, inset: fluorescence images of TPE-Py with different treating methods. (B) X-ray diffraction (XRD) spectra of TPE-Py in different aggregated states.

Figure S30. The photos of TPE-Pys-M in agate mortar during grinding under illumination at 365 nm.

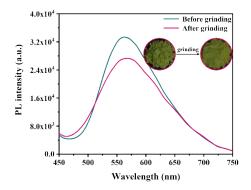
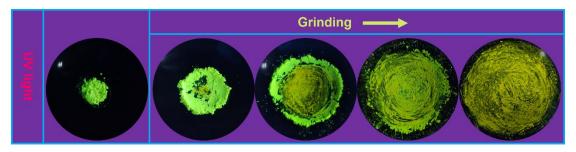
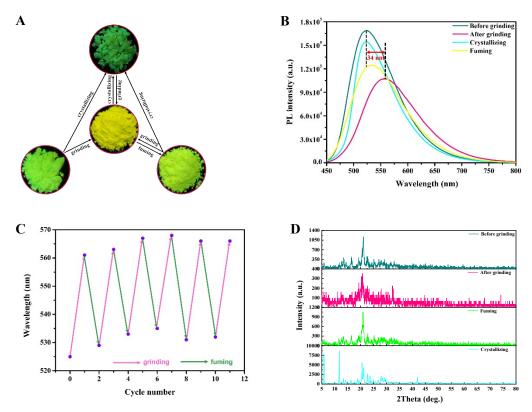




Figure S31. Changes of emission spectra of TPE-Pys-M before and after grinding.

Figure S32. The photos of TPE-Pys-B in agate mortar during grinding under illumination at 365 nm.

Figure S33. (A) Reversible mechanochromic fluorescence images of TPE-Pys-B with different treating methods. (B)Change in the emission spectrum of TPE-Pys-B powder by the grinding, fuming and crystallizing process. (C) X-ray diffraction (XRD) spectra of TPE-Pys-B in different aggregated states. (D) Repeated switching of the solid-state fluorescence of TPE-Pys-B by repeated grinding and fuming cycles.

9. Single crystal date of TPE-Pys-B

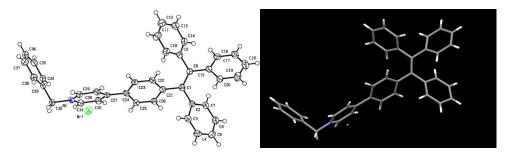


Figure S34. Single crystal structure of TPE-Pys-B.

Table S3. Crystal data and structure refinement for TPE-Pys-B.

Identification code	TPE-Pys-B
Empirical formula	$\mathrm{C_{38}H_{30}BrN}$
Formula weight	580.54
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	9.1911(2)
b/Å	10.7975(2)
c/Å	15.0783(3)
α/°	90
β/°	97.991(2)
γ/°	90
Volume/Å ³	1481.85(5)
Z	2
$\rho_{calc}g/cm^3$	1.301
μ/mm^{-1}	2.080
F(000)	600.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Cu K α ($\lambda = 1.54184$)
2Θ range for data collection/°	5.918 to 133.12
Index ranges	$-10 \le h \le 10, -12 \le k \le 11, -17 \le l \le 17$
Reflections collected	8600
Independent reflections	4060 [$R_{int} = 0.0199$, $R_{sigma} = 0.0241$]
Data/restraints/parameters	4060/1/361
Goodness-of-fit on F ²	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0343, wR_2 = 0.0937$
Final R indexes [all data]	$R_1 = 0.0345, wR_2 = 0.0939$
Largest diff. peak/hole / e Å-3	0.60/-0.39
Flack parameter	0.018(19)