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Calculation of ligand density

The average number of ligands binding on the nanoparticle was calculated by a
mathematical method. The ligand density (Djigand, ligands per nm?) on the nanoparticle
surface could be obtained by the following equation:
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Where, Myp is the mass of one MSP-AOPB nanoparticle, r is the radius of Fe;O,4 core
measured by TEM, p is the density of Fe;O4, w is the mass fraction of Fe;O, in the
MSP-AOPB nanoparticle, Syp is the surface area of one MSP-AOPB nanoparticle, R is
the radius of MSP-AOPB nanoparticle measured by DLS, Q is the transferrin (Tf)
binding amount on the MSP-AOPB nanoparticle, N, is the Avogadro constant, M is the
molecular weight of Tf.

Dligand =

Parameter Value
T 120 nm
R 287 nm
P 5.18 g/cm?
w 49.5%
Nj 6.02 X 1023
M 79 kDa




Table S1 Hydrodynamic diameters, PDI and zeta potentials of MSP, MSP-PGMA, MSP-IDA and

MSP-AOPB.
Sample Dy (nm) PDI Zeta-potential (mV)
MSP 313 0.187 223 £0.5
MSP-PGMA 457 0.057 228 £04
MSP-IDA 512 0.015 -458 £ 09
MSP-AOPB 575 0.045 -36.5 £ 0.7
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Figure S3 DLS plots of MSP, MSP-PGMA, MSP-IDA and MSP-AOPB dispersions.
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Figure S4 Loading efficiency of Tf on MSP-AOPB NPs at different temperatures and time. Results
are presented as mean = SD, n = 3 per group.
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Figure S5 (a) Loading efficiency and (b) binding efficiency of Tf on MSP-AOPB NPs at different
initial feeding amounts of Tf and temperatures.
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Figure S6 Cellular uptake of Tf-MSP-AOPB (abbreviated as Tf-NPs) determined by flow
cytometry. (a) Fluorescence intensity of Tf-NPs in HepG2 cells. The amount of Tf-NPs incubated
with HepG2 cells was 2 pg, 4 ug, 10 pg and 20 pg. (b) Quantitative fluorescence intensity analysis
of panel (a). Results are presented as mean + SD, n = 3 per group.
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Figure S7 Cellular uptake of Tf-MSP-AOPB (abbreviated as Tf-NPs) determined by flow
cytometry. (a) Fluorescence intensity of Tf-NPs in HepG2 cells. Incubation time for Tf-NPs and
HepG2 cells was 0.5 h, 1 h, 2 h and 4 h. (b) Quantitative fluorescence intensity analysis of panel
(a). Results are presented as mean + SD, n = 3 per group.
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Figure S8 Cell viability of MSP-AOPB NPs to (a) HEK 293T cells and (b) HepG2 cells after

incubation for 24 h. Results are presented as mean = SD, n = 6 per group.



