A novel multi-scale pressure sensing hydrogel for

monitoring physiological signals of the long-term bedridden

patients

Wenhui Zhao^{1, 2}, Yao Li², Jing Tian³, Chenyang Tang³, Xu Fei^{*1}, Longquan Xu¹, Yi Wang³

Supporting information

Conductivity test by the electrochemical workstation

The electrical properties of hydrogel were evaluated by the electrochemical workstation (ChI660E, CH Instruments Ins, China). The resistance of the hydrogel sensors was measured by the electrochemical impedance spectroscopy (EIS). The ionic conductivity (σ) was calculated as follows:

$$\sigma = \frac{L}{R \times S}$$

where R was the resistance value, L and S were the thickness and the sectional area of the hydrogels, respectively.

Sample	AM	[VBIm]Br	PHMs	MBA	APS	H_2O
	(g)	(g)	(wt%)	(g)	(g)	(mL)
P ₁₆ AMV-2	3.55	0.58	1.0 (P ₁₆ HMs)	0.01	0.02	10
P ₉ AMV-2	3.55	0.58	1.0 (P ₉ HMs)	0.01	0.02	10
P 5AMV-2	3.55	0.58	1.0 (P 5HMs)	0.01	0.02	10

Table S1. Feed ratio of multi-scale hydrogels with different size PHMs

Table S2. Feed ratio of the PAM, PAMV and P₁₆AMV hydrogels with different mass

percentages of P₁₆HMs

Sample	AM	[VBIm]Br	P ₁₆ HMs	MBA	APS	H ₂ O
	(g)	(g)	(wt%)	(g)	(g)	(mL)
PAM	3.55	0	0	0.01	0.02	10
PAMV	3.55	0.58	0	0.01	0.02	10
P ₁₆ AMV-1	3.55	0.58	0.5	0.01	0.02	10
P ₁₆ AMV-2	3.55	0.58	1.0	0.01	0.02	10
P ₁₆ AMV-3	3.55	0.58	1.3	0.01	0.02	10

Fig. S1 The synthesis of $P_{16}AMV$ hydrogels

Fig. S2 Size distribution of $P_{16}HM$ microspheres

Fig. S3 EDS mapping image of the PAMV hydrogel

Fig. S4 (a) The tensile stress-strain curves of the PAM, PAMV and different PHMs sizes of $P_{16}AMV$ hydrogels (n = 3); (b) the compressive stress-strain curves of the PAM, PAMV and different PHMs sizes of $P_{16}AMV$ hydrogels (n = 3)

Fig. S5 The photographs of (a) poking a stretched the PAM and $P_{16}AMV-2$ hydrogel film with a sharp cross screwdriver; (b) cutting and releasing $P_{16}AMV-2$ hydrogel; (c) knotted $P_{16}AMV-2$ hydrogel stretching

Fig. S6 The SEM images of *E. coli*, *S. aureus* and *C. albicans* before and after the P₁₆AMV-2 hydrogels treatment

Fig. S7 The optical images of the L929 mouse fibroblasts incubated with (a) PAM, (b) PAMV(c) $P_{16}AMV$ -1, (d) $P_{16}AMV$ -2, (e) $P_{16}AMV$ -3hydrogels; (f) cell viability of the PAM, PAMV and $P_{16}AMV$ hydrogels (n = 5)

Fig. S8 The pressure sensitivity of (a) PAM, (b) PAMV, (c) P₁₆AMV-1 and (d)

P₁₆AMV-3 hydrogels

Fig. S9 (a) Conductivity of the $P_{16}AMV-2$ hydrogel with different pH; (b) conductivity of the $P_{16}AMV-2$ hydrogel with different concentrations in urine

Fig. S10 Conductivity measured by electrochemical workstation