Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Figure S1. A) TEM image of CuCeTA; B) TEM image of CuTA; C) TEM image of CeTA; D) TEM image of poly(tannic acid) nanomaterials.

Figure S2. A) TEM image of CuCeTA; B) HTEM image of CuCeTA.

Figure S3. SEM image of CuCeTA.

Figure S4. TEM images at different times: A) 0.5 h; B) 1.0 h; C) 2.0 h; D) 2.5 h.

Figure S5. A) C 1s spectra of CuCeTA; B) O 1s spectra of CuCeTA; C) Cu 2p spectra of CuCeTA; D) Ce 3d spectra of CuCeTA.

Figure S6. TGA and differential curve of CuCeTA.

Figure S7. The POD-like activity of CuCeTA: a) ABTS + H_2O_2 + CuCeTA; b) ABTS + H_2O_2 ; c) ABTS + CuCeTA; d) ABTS.

Figure S8. MV experiment to verify the production of \cdot OH: a) MV + CuCeTA; b) MV + CuCeTA + H₂O₂; c) MV + H₂O₂. Insert was corresponding photos.

Figure S9. A) The catalytic activity of HRP and CuCeTA in different pH; B) The cycling experiment of CuCeTA.

Figure S10. Steady-state kinetic assay for TMB (A and C) and H_2O_2 (B and D) of CuCeTA nanozyme.

Figure S11. Steady-state kinetic assay for ABTS (A and C) and H_2O_2 (B and D) of CuCeTA nanozyme.

Figure S12. The influence of glyphosate on the catalytic activity of CuCeTA with ABTS as the chromogenic substrate: a: $ABTS + H_2O_2 + CuCeTA$; b: $ABTS + H_2O_2 + glyphosate (50 ppm) + CuCeTA$; c: $ABTS + H_2O_2 + glyphosate (500 ppm) + CuCeTA$; d: ABTS + glyphosate (50 ppm) + CuCeTA; e: ABTS + glyphosate (500 ppm) + CuCeTA; nsert was corresponding photos.

Figure S13. Structural formula of TA and several common pesticides, A) TA; B) glyphosate; C) fenthion; D) chlorpyrifos; E) profenofos; F) phosmet; G) bromoxynil; H) dichlorophene.

Figure S14. The partial enlarged FTIR of CuCeTA and CuCeTA-glyphosate.

Figure S15. A) The validation experiment of CuCeTA catalytic activity on test paper (a: TMB + H_2O_2 + CuCeTA; b: TMB + H_2O_2 ; c: TMB + CuCeTA; d: only TMB); B) The catalytic activity inhibition of glyphosate to CuCeTA (a: TMB + H_2O_2 + CuCeTA; b: TMB + H_2O_2 + glyphosate (50 ppm) + CuCeTA; c: TMB + H_2O_2 + glyphosate (500 ppm) + CuCeTA; d: TMB + glyphosate (50 ppm) + CuCeTA; e: TMB + glyphosate (500 ppm) + CuCeTA).

Element	Cu 2p	Ce 3d	O 1s	C 1s		
Content (%)	2.55	11.06	29.11	7		

Table S1. The content of element from XPS.

Catalyst	ТМВ		H_2O_2		
	K _m [mM]	V _{max} [10 ⁻⁸ M s ⁻¹]	K _m [mM]	V _{max} [10 ⁻⁸ M s ⁻¹]	Ref.
CuCeT A	0.543	0.139	0.620	1.92	This work
HRP	0.434	10.0	3.7	8.71	[1]
H@M	0.068	6.07	10.9	8.98	[1]
GeO ₂	0.420	23.297	1.75	23.4	[2]

Table S2. Comparison of K_m and V_{max} between CuCeTA and other catalysts with TMB as the chromogenic substrate.

Catalyst	ABTS		H ₂ O ₂		
	K _m [mM]	V _{max} [10 ⁻⁸ M s ⁻¹]	K _m [mM]	V _{max} [10 ⁻⁸ M s ⁻¹]	Ref.
CuCeTA	3.91	0.163	6.24	0.016	This work
HRP	0.16	29.88	0.29	32.93	[3]
PBNPs	1.08	31.4	17.1	29.3	[4]
Cys-MoS ₂	0.15	16.1	8.06	99.2	[5]
GQDs	10.4	1.78	1.17	1.24	[6]

Table S3. Comparison of K_m and V_{max} between CuCeTA and other catalysts with ABTS as the chromogenic substrate.

Notes and references

- 1 F. X. Qin, S. Y. Jia, F. F. Wang, S. H. Wu, J. Song and Y. Liu, *Catal. Sci. Technol.*, 2013, **3**, 2761.
- 2 X. Liang and L. Han, Adv. Funct. Mater., 2020, 30, 2001933.
- 3 W. Bing, H. J. Sun, F. M. Wang, Y. Q. Song and J. S. Ren, *J. Mater. Chem. B.*, 2018, **6**, 4062.
- 4 W. Zhang, S. L. Hu, J. J. Yin, W. W. He, W. Lu, M. Ma, N. Gu and Y. Zhang, J. Am. Chem. Soc., 2016, 138, 5860.
- 5 J. Yu, D. Q. Ma, L. Q. Mei, Q. Gao, W. Y. Yin, X. Zhang, L. Yan, Z. J. Gu, X.
 Y. Ma and Y. L. Zhao, *J. Mater. Chem. B.*, 2018, 6, 487.
- 6 H. J. Sun, A. D. Zhao, N. Gao, K. Li, J. S. Ren and X. G. Qu, Angew. Chem. Int. Ed., 2015, 54, 7176.