Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Magneto-assisted Enzymatic DNA Walker for Simultaneous Electrochemical Detection of

Amyloid-Beta Oligomer and Tau

Tao Cheng^a, Hongxiu Yuan^a, Yixi Dong^b, Shuo Xu^c, Gang Wang^b, Miaoqing Zhao^{c,*},

Jianwei Jiao^{a,d,*}, Jin Jiao^{a,*}

^a School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China

^b State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China

^c Department of pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China

^d State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

* Corresponding authors: E-Mail: jiaojin@sdfmu.edu.cn (J. Jiao)

Content list

Table S1. S-3
Table S2
Table S3
Figure S1S-6
Figure S2
Figure S3
Figure S4
Figure S5S-10
Figure S6
Figure S7S-12
Figure S8
Figure S9
Figure S10S-15
Figure S11S-16
ReferencesS-17

Name	Sequence(from 5' to 3')			
AβO-Apt	GCCTGTGGTGTTGGGGGCGGGTGCGAAAAA			
AβO-Apt-Bio	GCCTGTGGTGTTGGGGGGGGGGGGGGAAAAA-Biotin			
Tau-Apt	AAAAACTGAATAAGGACTGCTTAGGATTGCGATGATT			
Tau-Apt-Bio	Biotin-			
	AAAAACTGAATAAGGACTGCTTAGGATTGCGATGATTCAG			
AβO-Anchor	AAAAAGGATCACTCCTGTG			
Tau-Anchor	GGAGCTGAGGAAAAAA			
AβO-Anchor-MB	SH-AAAAAAGGATCACTCCTGTG-MB			
Tau-Anchor-Fc	FC-GGAGCTGAGGAAAAAA-SH			
AβO-Walker-α	CCAACACCACAGGAGTGATCCTTT			
AβO-Walker-β	ACCCGCCCCACAGGAGTGATCC			
AβO-Walker-γ	ACACCACAGGAGTGATCC			
Tau-Walker-α	TTTCCTCAGCTCCTAAGCAGTC			
Tau-Walker-β	TTTCCTCAGCGCAATCCTAAG			
Tau-Walker-γ	TTTCCTCAGCGTCCTTATTCA			
ΑβΟ-Μ1	ACTCCACAGGAGTGATCC			
ΑβΟ-Μ2	ACTCCAGAGGAGTGATCC			
ΑβΟ-Μ3	ACTCGAGAGGAGTGATCC			
Tau-M1	TTTCCTCAGCGC <u>T</u> ATCCTAAG			
Tau-M2	TTTCCTCAGCGC <u>T</u> ATCC <u>A</u> AAG			
Tau-M3	TTTCCTCAGCGC <u>T</u> AT <u>G</u> C <u>A</u> AAG			
Random	TCTTAACTTGGCAAGTCCGA			

 Table S1 DNA oligonucleotides used in this study.

Sample	Kind of	Dose of spiked	Found	Recovery	RSD
	sample	AβO (ng/mL)	(ng/mL)	(%, n = 3)	(%, n = 3)
1	PBS	200	224	112%	8.0
2	PBS	2000	1860	93%	5.1
3	10% serum	200	214	107%	8.4
4	10% serum	2000	2165	108%	10.7
5	aCSF	200	227	114%	4.1
6	aCSF	2000	1965	98%	4.9

Table S2	The recovery	tests of the	proposed method.

Note: Recovery of A β O (200 and 2000 ng/mL) in different matrices.

Sample	Kind of	Dose of spiked	Found	Recovery	RSD
	sample	Tau (ng/mL)	(ng/mL)	(%, n = 3)	(%, n = 3)
1	PBS	10	9.4	94%	1.1
2	PBS	100	102	102%	4
3	10% serum	10	9.5	95%	3.5
4	10% serum	100	101	101%	1.4
5	aCSF	10	10.3	103%	4.8
6	aCSF	100	110	110%	6

Note: Recovery of Tau (10 and 100 ng/mL) in different matrices.

Dection method	Biomarkers	Dections range	LOD	Refs
Electrochemical	ΑβΟ	0.5–50 μg/mL	0.02 μg/mL	[1]
Electrochemical	ΑβΟ	1 nM-2 μM	0.45 nM	[2]
Fluorescence	ΑβΟ	20 nM-10 µM	12.5 nM	[3]
Colorimetric	Tau	0.5–1000 ng/mL	0.254 ng/mL	[4]
Electrochemical	Tau	0.5 pM–100 pM.	0.42 pM	[5]
Surface enhancement Raman spectroscopy	$A\beta O$ and Tau	1–10 pM (AβO); 1 fM–3 nM (Tau)	0.37 pM for AβO; 0.42 fM for Tau	[6]
Fluorescence	$A\beta O$ and Tau	100–2000 pM (AβO); 50–1500 pM (Tau)	20 pM for AβO; 50 pM for Tau	[7]
Electrochemical	$A\beta O$ and Tau	20 pg/mL-20 μg/mL (AβO); 1 pg/mL-10 μg/mL (Tau)	1.28 pg/mL for AβO; 0.04 pg/mL for Tau	This work

Table S3 Selected methods for A β O and Tau detection.

Fig. S1 Transmission electron microscope (TEM) image of $A\beta O$

Fig. S2 Coomassie brilliant blue gel image of A β O (The aggregated forms of A β O are dimer and tetramer).

Fig. S3 Atomic Force Microscope (AFM) image of A β O.

Fig. S4 The concentration of A β O aptamer. Optimization of aptamer amount. Error bars, SD, n = 3.

Fig. S5 The linear relationship of the peak current of Absorance (A260) and the concentrations of A β O and Tau aptamer. Error bars, SD, n = 3.

Fig. S6 Chronocoulometry curves for the gold electrodes modified with five independent working

probe.

Fig. S7 (A)Differential pulse voltammetry (DPV) curves for the gold electrodes modified with five independent working probe. (B) A β O and Tau peak current of DPV Error bars, SD, *n* = 5.

Fig. S8 Optimization of the experiment. (A) Effect of affinity between A β O walker (W1) and A β O aptamer (T1). (B) Effect of affinity between Tau walker (W2) and Tau aptamer (T2). Error bars, SD, n = 3.

Fig. S9 The working volume of nicking enzyme (0.5 μ L Nt. A1WI and Nb. BbvCI) and optimization of Nt. A1WI and Nb. BbvCI working temperature. Error bars, SD, n = 3.

Fig. S10 The working volume and temperature of nicking enzyme (0.5 μ L Nt. A1WI and Nb. BbvCI) and 37 °C, Optimization of Nt. A1WI and Nb. BbvCI working time. Error bars, SD, *n* = 3.

Fig. S11 The normalized DPV peak intensities for mismatched sequence and target protein induced action. Error bars, SD, n = 3.

References

- [1] M. Amouzadeh Tabrizi, J. Ferré-Borrull and L. F. Marsal, *Biosens Bioelectron*, 2019, 137, 279–286.
- [2] X. Wang, L. Li, X. Gu, B. Yu and M. Jiang, Mikrochim Acta, 2021, 188, 49.
- [3] L. Liu, Y. Chang, J. Yu, M. S. Jiang and N. Xia, Sens. Actuators B Chem, 2017, 251, 359–365.
- [4] C. Duan, W. Cheng, Y. Yao, D. Li, Z. Wang and Y. Xiang, Anal Chem, 2022, 94, 12919–12926.
- [5] B. Shui, D. Tao, J. Cheng, Y. Mei, N. Jaffrezic-Renault and Z. Guo, *Analyst*, 2018, 143, 3549– 3554.
- [6] X. Zhang, S. Liu, X. Song, H. Wang, J. Wang, Y. Wang, J. Huang and J. Yu, ACS Sens, 2019, 4, 2140–2149.
- [7] X. Lu, X. Hou, H. Tang, X. Yi and J. Wang, Nanomaterials (Basel), 2022, 12, 4031.