Electronic Supplementary Information (ESI)

Facile one-pot multicomponent synthesis of peptoid based gelators as novel scaffolds for drug incorporation and pH-sensitive release

Sharol Sebastian,^a Eqvinshi Yadav,^a Priya Bhardwaj,^b Mulaka Maruthi,^b Deepak Kumar^c and Manoj K. Gupta^{a,*}

^aDepartment of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India. Email — <u>mkgupta@cuh.ac.in</u>; Phone: +91 9728739075

^bDepartment of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India

^cDepartment of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan- 173229, Himachal Pradesh, India

SI. No.	Contents	Page No
1.	¹ H NMR spectrum of compound 5a	S3
2.	¹³ C NMR spectrum of compound 5a	S3
3.	¹ H NMR spectrum of compound 5b	S4
4.	¹³ C NMR spectrum of compound 5b	S4
5.	¹ H NMR spectrum of compound 5c	S5
6.	¹³ C NMR spectrum of compound 5c	S5
7.	¹ H NMR spectrum of compound 5d	S6
8.	¹³ C NMR spectrum of compound 5d	S6
9.	¹ H NMR spectrum of compound 5e	S7
10.	¹³ C NMR spectrum of compound 5e	S7
11.	¹ H NMR spectrum of compound 5f	S8
12	¹³ C NMR spectrum of compound 5f	S8
13.	¹ H NMR spectrum of compound 5g	S9
14.	¹³ C NMR spectrum of compound 5g	S9
15.	¹ H NMR spectrum of compound 5h	S10
16.	¹³ C NMR spectrum of compound 5h	S10
17.	¹ H NMR spectrum of compound 5 i	S11
18.	¹³ C NMR spectrum of compound 5 i	S11
19.	UV-Vis spectra for metronidazole (MZ) solutions at different concentrations and the calibration curve	S12
20.	UV-Vis Spectra of gelator (5d), drug metronidazole (MZ), and release of MZ at pH 7.4 from drug loaded gel	S12
21.	UV-Vis Spectra of kinetic degradation of drug composite organo/hydrogel at pH 5.5	S13
21.	UV-Vis Spectra of kinetic degradation of drug composite organo/hydrogel at pH 7.4	S13
22.	Drug release kinetics plots for drug loaded organo/hydrogels at pH 5.5	S14
23.	Drug release kinetics plots for drug loaded organo/hydrogels at pH 7.4	S15
24.	Cell viability images at different concentrations of 5d and 5d +MZ	S16
25.	The strain amplitude and frequency sweep rheological experiment for 5d in DMSO/water at constant frequency 1 Hz	S17

Fig. S2 ¹³C NMR spectrum of compound 5a

Fig. S6 ¹³C NMR spectrum of compound 5c

210

Fig. S10 ¹H NMR spectrum of compound 5e

Fig. S11 ¹H NMR spectrum of compound 5f

Fig. S12 ¹³C NMR spectrum of compound 5f

Fig. S13 ¹H NMR spectrum of compound 5g

Fig. S14 ¹³C NMR spectrum of compound 5g

Fig. S18 ¹H NMR spectrum of compound 5i

Fig. S19 UV-Vis spectra collected for Metronidazole (**MZ**) solutions at different concentrations (left), highlighting the **MZ** band at 319 nm used to establish the calibration curve (right) for calculating cumulative drug release

Fig. S20 UV-Vis spectra of gelator (5d), drug metronidazole (MZ), and release of MZ at pH 7.4 from drug loaded gel

Fig. S21 UV-Vis spectra of kinetic degradation of drug composite organo/hydrogel at pH 5.5

Fig. S22 UV-Vis spectra of kinetic degradation of drug composite organo/hydrogel at pH 7.4

Fig. S23 Drug release kinetics plots for drug loaded organo/hydrogels at pH 5.5 (a): zero-order; (b): first-order; (c): Higuchi; (d): Korsmeyer-Peppas; (e): Hixson-Crowell models

Fig. S24 Drug release kinetics plots for drug loaded organo/hydrogels at pH 7.4 (a); zero-order (b); first-order (c); Higuchi (d); Korsmeyer-Peppas (e); Hixson-Crowell models

Fig. S25 Cell viability images at different concentrations (2000 μg/mL, 200 μg/ml, 20 μg/mL, 2 μg/mL, 0.2 μg/mL, 0.02 μg/mL, 0.002 μg/mL) in comparison with the control (0.000 μg/mL) condition of **5d** and **5d+MZ**

Fig. S26 The strain amplitude rheological experiment for **5d** in DMSO/water at constant frequency 1 Hz; a) 15 mg; (b) 18 mg; (c) 21 mg; (d) 24 mg. The Frequency sweep rheological experiment for **5d** DMSO/water at constant strain of 1%; (e) 15 mg; (f) 18 mg; (g) 21 mg; (h) 24 mg