## **Electronic Supplementary Information for:**

## pH-Responsive supramolecular hydrogel encapsulating CuMnS nanoenzyme catalyst for synergistic photothermal-photodynamicchemodynamic therapy of tumors

AnQin Dong<sup>a†</sup>, Shiwei Huang<sup>b†</sup>, Zhiyi Qian<sup>b</sup>, Sicheng Xu<sup>b</sup>, Weizhong Yuan<sup>a,b\*</sup>,

Bing Wang<sup>a\*</sup>

<sup>a</sup>Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China. E-mail: hnxgwk@163.com (B. Wang)

<sup>b</sup>School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China. E-mail: yuanwz@tongji.edu.cn (W. Yuan)

<sup>†</sup>These authors contributed equally to this work.

## Photothermal effect of PCMS NPs

To measure the photothermal conversion effect of PCMS nanoparticles, the PCMS NPs solution (500  $\mu$ g/mL) was irradiated for 5 min using an 808 nm laser (1 W/cm<sup>2</sup>). Meanwhile, the temperature changes were recorded using an infrared thermal imaging camera every 30 s. The photothermal conversion efficiency of the PCMS was calculated by the eq(1).

$$\eta = \frac{hS(T_{max} - T_{surr}) - Q_s}{I(1 - 10^{-A_{808}})}$$

where h was the heat transfer coefficient. S was the surface area of the container.  $T_{max}$  was the equilibrium temperature.  $T_{surr}$  was the ambient temperature.  $Q_s$  was heat loss from light absorbed by the container, and it was calculated to be approximately equal to 0 mW. I was the laser power density.  $A_{808}$  was the absorbance of the samples at 808 nm. Where hS can be calculated by eq(2).

 $m_D$  and  $C_D$  were the mass (1 g) and heat capacity (4.2 J·g-1·°C-1) of the solvent (water). Where  $\tau_s$  was the sample system time constant, calculated by eq(3) and eq(4).

$$t = -\tau_s \ln \theta \qquad \text{eq(3)}$$
$$\theta = \frac{T_{surr} - T}{T_{surr} - T_{max}}$$
$$\text{eq(4)}$$

where t was the cooling time, T was the temperature at cooling time, and  $\theta$  was a dimensionless dynamic temperature introduced to calculate  $\tau_s$  (( $\tau_s$  was the slope of bule line in Fig. S5).



Fig. S1. XPS full spectrum patterns of PCMS NPs.



Fig. S2. Synthetic scheme for mPEG-ADH-CA.



Fig. S3. UV-vis absorption spectra of mPEG, CA and mPEG-ADH-CA.



Fig. S4. Time- $\Delta$ T curves of aqueous solutions of PCMS NPs (125, 250, 500 µg/mL) with different concentrations under NIR (808 nm, 1 W/cm<sup>2</sup>) irradiation.



Fig. S5. Calculation of the photothermal conversion efficiency.

|                                                | 1         |       | 5 1 1       |            | U     |   |
|------------------------------------------------|-----------|-------|-------------|------------|-------|---|
| Photothermal                                   | С         | Laser | Laser power | $\Delta T$ | η     |   |
| agents                                         |           | (nm)  | $(W/cm^2)$  | (°C)       | (%)   |   |
| PCMS NPs                                       | 500 µg/ml | 808   | 1           | 26.5       | 67.8  |   |
| CuCoS NPs <sup>[1]</sup>                       | 100 µg/ml | 808   | 1           | 40.3       | 29.4  |   |
| Black phosphorus                               | 50 ppm    | 808   | 1           | 31.5       | 28.4  |   |
| quantum dots                                   |           |       |             |            |       |   |
| (BPQDs) <sup>[2]</sup>                         |           |       |             |            |       |   |
| Au@MOF <sup>[3]</sup>                          | 50 ppm    | 808   | 0.8         | 35.1       | 30.2  |   |
|                                                |           | 1064  |             | 43.5       | 48.5  |   |
| MoSe <sub>2</sub><br>nanosheets <sup>[4]</sup> | 100 µg/ml | 808   | 2.5         | 29.3       | 57.9  |   |
| CMC-rGO/CHO-                                   | -         | 808   | 1           | 39         | 86.7  |   |
| PEG hydrogel <sup>[5]</sup>                    |           |       |             |            |       |   |
| MSN-SS-PDA <sup>[6]</sup>                      | 200 µg/ml | 808   | 2           | 50.4       | 40.21 | - |
|                                                |           |       |             |            |       | 1 |

Table S1. Photothermal performance of recently reported photothermal agents



Fig. S6. Relative cell viability of NIH 3T3 cells after incubation with different extracts of (a) PAC/ $\alpha$ -CD hydrogel, and (b) PCMS@PAC/ $\alpha$ -CD composite hydrogel for 24 h and 48 h.(c) Hemolytic activity evaluation of different solutions and hydrogels and the digital photos of the hemolysis test (n = 3, mean  $\pm$  SD, \*\*p < 0.01).



Fig. S7. Digital photos of tumors and major organs of mice under different treatments (i-v: Control, Gel, PCMS+PAC+NIR, Gel@PCMS, Gel@PCMS+NIR).



Fig. S8. H&E analysis of the major organs of mice under different treatments (scale bar: 200  $\mu m).$ 

## References

[1] G. Zhu, P. Zheng, M. Wang, W. Chen and C. Li, *Inorg. Chem. Front.* 2022, 9, 1006-1015.

[2] Z. Sun, H. Xie, S. Tang, X. F. Yu, Z. Guo, J. Shao, H. Zhang, H. Huang, H. Wang and P. K. Chu, *Angew. Chem. Int. Ed.* 2015, **54**, 11526-11530.

[3] X. Deng, S. Liang, X. Cai, S. Huang, Z. Cheng, Y. Shi, M. Pang, P. Ma and J. Lin, *Nano Lett.* 2019, **19**, 6772-6780.

[4] Z. Lei, W. Zhu, S. Xu, J. Ding, J. Wan and P. Wu, ACS Appl. Mater. Interfaces2016, 8, 20900-20908.

[5] W. Liu, X. Zhang, L. Zhou, L. Shang and Z. Su, *J. Colloid Interface Sci.* 2019, **536**, 160-170.

[6] W. Lei, C. Sun, T. Jiang, Y. Gao, Y. Yang, Q. Zhao and S. Wang, *Mater. Sci. Eng. C Mater. Biol. Appl.* 2019, **105**, 110103.