Tetrahedral DNA Nanostructure-Corbelled Click Chemistry-based Large-scale assembly of Nanozyme for ratiometric fluorescence Assay of DNA Methyltransferase Activity

Guohui Cao,^a Huiying Jia,^a Shuling Xu,^a Ensheng Xu,^a Pin Wang,^{b*} Qingwang

Xue,^{a*} Huaisheng Wang^a

^a School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China ^bNeurology of Department, The Second Hospital, Cheeloo College of Medicine,

Shandong University. Jinan, Shandong, 250033 , P.R.China.

*Corresponding author: Tel: +86-635-8239001; Fax: +86-635-8239001 Email: wangpin1023@126.com; xueqingwang1983@163.com

Oligonucleotide Sequence(5'-3')					
DNA ₁	biotin-TTTTTTTTGGACGGAACAGCTTTGATCGCGAACC				
DNA ₂	HS-TTTTTTTTTTCTTCGGTTCGCGATCAAAGCTGTTCCG				
Tetra-7A	GAGCGTTAGCCACACACACAGTCTTTTTTT <u>TGAGGT</u> -alkyne				
Tetra-7B	NH2-C6-TTAGGCGAGTGTGGCAGAGGTGT				
Tetra-7C	NH2-C6-CGCCTAAACAAGTGGAGACTGTG				
Tetra-7D	NH ₂ -C6-AACGCTCACCACTTGAACACCTC				
Tetra-13A	ACACTACGTCAGAACAGCTTGCATCACTGGTCACCAGAGTATTTTTTTT				
Tetra-13B	NH2-C6-ACGAGCGAGTTGATGTGATGCAAGCTGAATGCGAGGGTCCT				
Tetra-13C	NH2-C6-TCAACTCGCTCGTAACTACACTGTGCAATACTCTGGTGACC				
Tetra-13D	NH2-C6-TCTGACGTAGTGTATGCACAGTGTAGTAAGGACCCTCGCAT				
Tetra-17A	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTATTTT				
	TTTT <u>TGAGGT</u> -alkyne				
Tetra-17B	NH2-C6-TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAA				
	TAC				
Tetra-17C	NH2-C6-TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTACTATGGCGGCTC				
	TTC				
Tetra-17D	NH ₂ -C6-TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCGTTTGTATTGGACCCTCG				
	CAT				
Tetra-26A	GCCTGGAGATACATGCACATTACGGCTTTCCCTATTAGAAGGTCTCAGGTGCGCGTTTC				
	GGTAAGTAG ACGGGACCAGTTCGCC TTTTTTTT <u>TGAGGT</u> -alkyne				
Tetra-26B	NH2-C6-CGCGCACCTGAGACCTTCTAATAGGGTTTGCGACAGTCGTTCAACTAGAATG				
	CCCTTTGGGCTGTTCCGGGTGTGGCTCGTCGG				
Tetra-26C	NH2-C6-GGCCGAGGACTCCTGCTCCGCTGCGGTTTGGCGAACTGGTCCCGTCTACTTA				
	CCGTTTCCGACGAGCCACACCCGGAACAGCCC				
Tetra-26D	NH ₂ -C6-GCCGTAATGTGCATGTATCTCCAGGCTTTCCGCAGCGGAGCAGGAGTCCTCG				
	GCCTTTGGGCATTCTAGTTGAACGACTGTCGC				
<i>l</i> DNA	Azide-AGTA GGTTGTATAGTT				

 Table S1. Sequence information for the nucleic acids used in this study.

H1*	AGTAGGTTGTATAGTTCAAAGTAACTATACAACCTACTACCTCA-SH
H2*	SH-ACTTTGAACTATACAACCTACTTGAGGTAGTAGGTTGTATAGTT

Figure S1. (A) Gel electrophoresis analysis of Dam MTase: (Lane 1) 0.5 μ M dsDNA + 10 U/mL Dam MTase; (Lane 2) 0.5 μ M dsDNA + 20 U/mL Dpn I; (Lane 3) 0.5 μ M dsDNA + 10 U/mL Dam MTase + 20 U/mL Dpn I. (B) Fluorescence response of Alk-DTN-MBs under different conditions after "click" chemistry reaction: Cy3 labeled azide-*I*DNA + Cu⁺ + Alk-DTN-MBs (a), Cy3 labeled azide-*I*DNA + Alk-DTN-MBs (b). (C) Gel electrophoresis analysis of the "click" chemistry reaction-mediated hybridization chain reaction: (Lane 1) azide-*I*DNA; (Lane 2) alkyne-tetra-A; (Lane 3) azide-*I*DNA + alkyne-tetra-A + Cu⁺; (Lane 4) azide-*I*DNA + alkyne-tetra-A; (Lane 5) azide-*I*DNA + alkyne-tetra-A + H1 + H2; (Lane 6) azide-*I*DNA + alkyne-tetra-A + Cu⁺ + H1 + H2. (D) The feasibility of the sensor for Dam MTase assay under different conditions: (a) in the presence of Dam MTase (10 U/mL); (b) in the absence of Dam MTase.

Figure S2. Effects of **(A)** methylation time, **(B)** DpnI concentration, **(C)** DTN probe concentration, **(D)** H1 (or H2) probe concentration, and **(E)** oPD concentration. The Dam concentration is 10 U/mL. Error bars represent the standard deviation from three independent experiments.

Table S2. Determination of Dam MTase in the spiked human serum samples using the developed method

Samples	Added (U/mL)	Found (U/mL)	RSDs (%, n=3)	Recovery (%)
1	0.1	0.0972	3.2	97.2
	0.1	0.1025	3.7	102.5
	0.1	0.0983	3.6	98.3
2	1.0	1.032	4.2	103.2
	1.0	0.969	3.9	96.9
	1.0	1.027	4.5	102.7
3	10.0	10.39	2.5	103.9
	10.0	10.15	3.5	101.5
	10.0	9.96	4.0	99.6

Figure S3. The proposed strategy-based detection of Dam MTase in complex biological sample: PBS buffer, JM110 and DH5 α E. coli cell lysates.

	r paononou	Linear range	Detection limit	
Analytical method	Strategy	(U mL ⁻¹)	(U mL ⁻¹)	Ref.
SERS	Au nanocube enhanced SERS biosensor coupled with strand	10 ⁻⁴ - 0.5	8.65×10^{-5}	1
SEDS	displacement amplification (SDA) Nanoholes array (NHA) with the	0.002 - 200	2×10-4	2
SERS	Reaction (HCR) Strand displacement amplification	0.002 200	2^10	2
ICP-MS/cascade	(SDA) and multicomponent nucleic acid enzyme (MNAzyme) AuNPs/ERGO hybrids and	0.001-0.2	1.51 × 10 ⁻⁴	3
Electrochemistry	Hybridization Chain Reaction (HCR) strategy	0.02–10	0.0073	4
Electrochemistry	Porous organic polymer inorganic nanocomposite(Cu ₂ O@FePPO _{PBADE})	0.005 - 100	0.0014	5
Ratiometric ECL	Polyaniline and anti-fouling peptidemodified electrode	0.05 - 100	0.02	6
Fluorescence	induced activators to unlock the collateral cleavage activities (trans- cleavage) of CRISPR/Cpf 1 (TdT-IU- CRISPR/ Cpf 1)	1.59×10^{-3} - 3.18×10^{-1}	1.26 × 10 ⁻³	7
Fluorescence	Singlemoleculefluorescencecorrelationspectroscopy(FCS)andPolystyrene polymer dots	0.025 - 3	0.025	8
Fluorescence	Isothermal autocatalytic hybridization reaction (AHR) circuit	0-1.0	0.011	9
Fluorescence	Cascade invasive reactions Entropy-driven reaction and toehold-	0.1 - 10	0.002	10
Fluorescence	initiated rolling circle amplification (TIRCA)	0.1 - 40	0.06	11
Fluorescence	Dissipative DNA networks HpaII-assisted and linear	0.001 - 0.2	0.113	12
Fluorescence	amplification-enhanced exponential amplification strategy	0.125 - 8	0.034	13
Single-molecule detection	(APE1)-mediated cascade signal amplification platform Tetrahedral DNA Nanostructure-	1.0 × 10 ⁻⁴ - 15	6.72×10^{-5}	14
Fluorescence	Braced click chemistry based Large- scale assembly of Nanozyme	0.0025-10	0.001	This work

Table S3. Comparison with other published methods for Dam MTase activity

- H. C. Hu, S. H. Wu, L. X. Jin and J. J. Sun, *Biosensors & Bioelectronics*, 2022, 210, 114283.
- X. J. Luo, T. L. Kang, J. T. Zhu, P. Wu and C. X. Cai, Acs Sensors, 2020, 5, 3639-3648.
- 3. S. C. Liu, M. He, B. B. Chen, X. Yin, Q. Kang, Y. Xu and B. Hu, *Sensors and Actuators B-Chemical*, 2022, **362**.
- 4. X. L. Peng, J. L. Zhu, W. Wen, T. Bao, X. H. Zhang, H. P. He and S. F. Wang, *Biosensors & Bioelectronics*, 2018, **118**, 174-180.
- 5. Z. K. Zheng, T. T. Liu, H. Y. Zhao, L. Cui and X. M. Zhang, Sensors and Actuators B-Chemical, 2022, **372**, 132650.
- Y. X. Li, L. Wang, C. F. Ding and X. L. Luo, *Biosensors & Bioelectronics*, 2019, 142, 111553.
- X. L. Chen, G. H. Cao, X. F. Wang, Z. Ji, F. L. Xu, D. Q. Huo, X. G. Luo and C. J. Hou, *Biosensors & Bioelectronics*, 2020, 163, 112271.
- Y. Y. Huang, L. Y. Deng, D. Su, X. Y. Huang and J. C. Ren, *Analyst*, 2021, 146, 3623-3632.
- F. Z. Li, Y. Y. Chen, J. H. Shang, Q. Wang, S. Z. He, X. W. Xing and F. A. Wang, *Analytical Chemistry*, 2022, 94, 4495-4503.
- Y. L. Liu, Y. B. Tu, H. P. Wu, H. Zhang, H. H. Chen, G. H. Zhou, P. Wang and Y. Q. Gu, Sensors and Actuators B-Chemical, 2020, 313, 128029.
- 11. T. Wang, H. Y. Que, W. B. Cheng, X. Y. Yan, H. M. Ma, P. Liu, X. F. Gan and Y. R. Yan, *Sensors and Actuators B-Chemical*, 2019, **296**, 126658.
- 12. J. J. Liu, Y. Liu, L. H. Zhang, S. N. Fu and X. Su, *Biosensors & Bioelectronics*, 2022, **215**, 114561.
- 13. Y.Q. An, Z.Q. Yu, D. Liu, L.R. Han, X. Zhang, X.L. Xin, C.P. Li, Anal. Bioanal. Chem., 2023, 415, 2271-2280.
- Y. Han, C. Wang, X.R. Zou, Y.Zhang, Q.F Xu, C.Y Zhang, *Anal. Chem.* 2022, 94, 5980–5986