Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2023

Supporting Information

Fabrication of ROS-responsive Mesoporous Silica Nanoparticles with interior

pore-wall modification for smart azoxystrobin delivery

Tuqiang Gao& Borui Zhang, Zhaochen Wu, Qizhen Zhang, Xin Shi, Congying Zhou,

Xiaofang Liu, Pengfei Liu*, Xili Liu

College of Plant Protection, China Agricultural University, Beijing, 100193

&These authors contributed equally to this work and should be considered co-first

authors.

*Corresponding authors, Email: pengfeiliu@cau.edu.cn

Figure S1: Chemical structures of azoxystrobin (AZOX)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2023

Figure S2. Liquid ¹H NHR spectrum (400 MHz, CDCl₃) of PHS-APTES.

Table S1. Mesoporous Structure Characterization of MSN-PHS and MSN-PHS-AZOX.

Sample	SBET (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
MSN-PHS	979.566	0.691	3.404
MSN-PHS-AZOX	725.36	0.418	3.063

Figure S3. Pore size distribution of MSN-PHS and MSN-PHS-AZOX.

Table S2. Different fitted kinetic equations of MSN-PHS-AZOX in aqueous 30% methanol solution of 0, 50, 200, 500 μ M H₂O₂.

Concentration	First-order		Peppas		Higuchi	
(µM)	Kinetic equation	R ²	Kinetic equation	R ²	Kinetic equation	R ²
0	$y = 14.64 e^{(0.28x)} + 1.79$	0.99	$y = 11.27 x^{0.35}$	0.99	$y = 4.85 x^{1/2} + 8.10$	0.96
50	$y = 16.02 e^{(0.44x)} + 4.85$	0.99	$y = 14.06 x^{0.34}$	0.98	$y = 5.76 x^{1/2} + 10.30$	0.95
200	$y = 24.70 e^{(0.18x)} + 8.40$	0.99	$y = 14.42 x^{0.37}$	0.98	$y = 7.31 x^{1/2} + 8.97$	0.95
500	$y = 23.28 e^{(0.44x)} + 2.00$	0.98	$y = 17.36 \ x^{0.36}$	0.94	$y = 8.26 x^{1/2} + 10.53$	0.90

Treatment	Fitted equation	EC50 (µg/mL)	R2
AZOX TC	y = 0.7440x + 6.0478	0.0668	0.9117
AZOX SC	y = 0.7163x + 5.9824	0.0726	0.9075
MSN-PHS-AZOX with H2O2	y = 0.6583x + 5.9136	0.0776	0.8888
MSN-PHS-AZOX	y = 0.8402x + 5.4666	0.2801	0.9310

Table S3. Virulence regression equation of AZOX TC, AZOX SC, MSN-PHS-AZOX on mycelial growth of *B. cinerea* with and without H_2O_2 in the medium.

Figure S4. The Zeta potential of MSN-PHS, MSN-PHS-AZOX, and MSN-NH₂.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Figure S5. The inhibitory effect of MSN-PHS nanocarriers (a, b) and H_2O_2 (c) on *Botrytis cinerea*.

Figure S6. The inhibitory effect of MSN-PHS nanocarriers to *B. cinerea* on the lesion development on cucumber leaves.