Supplementary Information

Dual Functional Quaternary Chitosans with Thermoresponsive Behavior: Structure-Activity Relationships in Antibacterial Activity and Biocompatibility

Sedigheh Borandeh[†], Isabella Laurén[†], Arun Teotia, Jukka Niskanen, Jukka Seppälä^{*}

Polymer Technology, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland

[†] Equal contribution

^{*} Corresponding author: jukka.seppala@aalto.fi

Schemes

Scheme S1. Reaction schemes of the preparation of quaternized chitosan with (A) AETMAC and (B) GTMAC.

Figures

Figure S1. FT-IR spectra of chitosan and derivatives.

Figure S2. ¹H-NMR spectra and integrals used for the determination of the degree of quaternization (dQ) and deacetylation (DDA), where 1-6 is chitosan, SQC-AETMAC, DQC-AETMAC, DQC-GT/AET, SQC-GTMAC, and DQC-GTMAC.

Figure S3₁₀₅¹³C₁MR spectra₈of (A) chitosan; (B) DQC-AETMAC; and (C) DQC-GT/AET. DQC-GTMAC was excluded due to processing difficulties.

Figure S4. Results of GPC analysis: the obtained molecular weight (M_w) and refractive index (RI) versus their respective elution time of chitosan and DQCs.

Figure S5. (A) TGA thermogram curves and (B) X-ray diffraction patterns of chitosan and its derivatives.

Figure S6. (A, B) UCST behavior of SQC-AETMAC during heating 10-80 °C, at different concentrations and with the addition of NaCl. (C) UCST behavior of DQC-AETMAC at a concentration of 10 % (w/v). (D) viscosity (\log_{10}) of CMC and DQCs at 5 and 10 % (w/v) concentrations. Chitosan and QCMC-GTMAC were excluded due to too high viscosities.

Figure S7. Antimicrobial activity analysis of representative chitosan derivatives on *P. syringae* and *E. coli* after 10 minutes of contact time. (A) Photograph showing antimicrobial activity of (i) DQC-GT/AET; (ii) DQC-AETMAC; and (iii) DQC-GTMAC, on *P. syringae* at 6.25 and 12.5 mg/mL of bioactive molecules, after 72 hours of incubation. (B) Photograph showing antimicrobial activity of (i) DQC-AETMAC; and (ii) DQC-GTMAC, on *E. coli*, at 100 and 50 mg/mL, after 24 hours of incubation. (C) Photograph showing antimicrobial activity of (i) DQC-AETMAC on *E. coli*, at 200 and 100 mg/mL, showing the number of CFUs observed after 48 and 72 hours of incubation. (D) Photograph showing zone of inhibition of different QCs for (a) streak, and (b) spread-plated *E. coli*, showing positive antimicrobial properties of QCs. (Inset 4x zoomed image).

Figure S8. (A) Quantitative data of the cytotoxic behavior of quaternized chitosan on NIH-3T3 cells at different concentrations after 48h of incubation. **(B)** Microscopic images on NIH-3T3 cells after 24 h of incubation.

Tables

Table S1. Concentration dependency of QCs on NIH-3T3 cell viability after 48 h of incubation (live/dead staining).

Conc. [mg/mL]	SQC- AETMAC	SQC- AETMAC	DQC- AETMAC	DQC- AETMAC	DQC- GT/AET	DQC- GT/AET
	%-Live	%-Dead	%-Live	%-Dead	%-Live	%-Dead
0.25	17.7	82.29	73.54	26.19	76.3	23.7
0.50	19.0	80.96	26.0	73.0	57.8	42.1
1.00	2.0	98.0	0.67	99	76.3	23.7