Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

# **Supporting Information For**

# NIR light-driving aza-BODIPY with two efficacy fragments for photothermal therapy by triggering cancer cell apoptosis

Chunyu Shao,<sup>a†</sup> Xiuyan Gong,<sup>b†</sup> Dongxiang Zhang,<sup>a</sup> Xin-Dong Jiang,<sup>\*a</sup> Jianjun Du<sup>\*c</sup> and Guiling Wang<sup>\*b</sup>

<sup>a</sup> Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China. E-mail:<u>xdjiang@syuct.edu.cn</u>

<sup>b</sup> Department of Cell Biology, China Medical University, Shenyang, 110122, China. E-mail: glingwang@cmu.edu.cn

<sup>c</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China. E-mail: <u>dujj@dlut.edu.cn</u>

+ These authors contributed equally to this work.

1 Experimental section

2 Figures and Tables

3 NMR and HRMS

4 X-ray data of NMeBu

5 References

#### **1** Experimental section

#### General

Unless otherwise stated, all chemical substances and organic solvents used were analytical grade and obtained from Energy Chemical & Technology (Shanghai) Co. Ltd. without extra purification. A VARIAN Mercury 500 MHz spectrometer was employed to record <sup>1</sup>H NMR spectra. Chemical shifts in <sup>1</sup>H NMR ( $\delta$ ) are presented in ppm downfield from Me<sub>4</sub>Si, as estimated by residual chloroform ( $\delta$  7.26 ppm). On a VARIAN Mercury 125 MHz spectrometer, <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub>, reported in ppm with the internal chloroform signal at  $\delta$ =77.0 ppm as the reference. The precise molecular weight of the product is determined utilizing a high resolution mass spectrometer. A UV-2550 spectrophotometer was used to record an absorption spectroscopy at 298 K. Fluorescence spectra are presented as cm<sup>-1</sup> and were captured using an F-128 spectrophotometer. Laser particle size analyzer was bought from Malvern. The temperature of the solution is tracked by a temperature determining camera. The light source employed for light irradiation was a 808 nm laser that was purchased from Changchun New Industries Optoelectronics Technology and controlled by a fiber linked laser system for the laser output power. A CEL-NP 2000 power meter was implemented for evaluating the optical power density which was obtained from Beijing Zhong Jiao Jin Yuan Technology Co, Ltd. In the CCK8 assessment, a BioTek Synergy H1 microplate reader was utilized. Fluorescence imaging was estimated using an Olympus Confocal Laser Fluorescence Microscope FV1200 (Japan). The flow cytometric analysis was used the BD FACSVerse<sup>™</sup> Flow Cytometer.

#### Singlet Oxygen Detection

Utilizing 1,3-diphenylisobenzofuran (DPBF), the  ${}^{1}O_{2}$  production in toluene was determined.<sup>1-3</sup> The absorbance of DPBF at 416 nm was adjusted to about 1.4 in toluene and the absorbance of dye molecule was adjusted to about 0.8. The characteristic absorption of DPBF was applied to characterize  ${}^{1}O_{2}$  production. The absorption value of the dye molecule indicates the photo-stability of the dye. The

808 nm laser light source is used, the optical radiation power is 0.1 W/cm<sup>2</sup>, and the illuminated time is 0-30 min.

#### The Preparation of dye-nanoparticles

Nano-deposition method was used for preparation.<sup>4-7</sup> 1 ml THF solution containing 1 mg dye and 5 mg DSPE-PEG<sub>2000</sub> is slowly but steadily injected to the 10 ml aqueous solution. Following that, THF was volatilized by constant stirring for 24 h to ensure that dye was evenly spread in the solution. By centrifuging the appropriate NPs at 6000 rpm for 5 min, the final produces could be attained.

#### Photothermal effect and efficiency

A variety of concentrations were created (0-80  $\mu$ M), and all of them were exposed to 0.8 W/cm<sup>2</sup> of an 808 nm laser for 5 min. The temperature was measured every 30 s using an infrared thermal imaging camera. Meanwhile, 30  $\mu$ M dye was treated by 808 nm laser at various power densities (0.2-0.8 W/cm<sup>2</sup>) for 5 min. The temperature was collected by the infrared thermal imaging camera every 30 s. The solution was cooled following 5 min of light irradiation. During this process, the solution temperature was monitored every 30 s. The photothermal conversion efficiencies ( $\eta$ ) was calculated using the following method.<sup>8-10</sup>

$$\eta = \frac{hs(T_{Max} - T_{Surr}) - Q_{Dis}}{I(1 - 10^{-A})}$$

*h* means heat transfer coefficient, *s* was for container surface area,  $Q_{Dis}$  stands for heat dispersed from the laser via the solvent and container, *I* was for laser power, and *A* represents for absorbance at excitation wavelength.  $\eta$  denotes photothermal conversion efficiency.

$$hs = \frac{mC}{\tau_s}$$

*m* is the total quantity of the photothermal reagent containing solution, *C* represents the temperature coefficient, and  $\tau_s$  is the relevant time constant.

$$t = -\tau_s ln^{\mu}(\theta)$$

The temperature of the driving force is a non-dimensional parameter termed  $\theta$ .

$$\theta = \frac{T - T_{Surr}}{T_{Max} - T_{Surr}}$$

*T* is the current temperature,  $T_{Max}$  is the highest steady state temperature, and  $T_{surr}$  denotes the surrounding temperature.

#### Cytotoxicity assay by CCK8 testing

For the dark cytotoxicity investigation, SW620 cells treated with NPs (0-40  $\mu$ M) in DMEM medium for 4 h but without laser irradiation were also used. For photocytotoxicity assessment, various concentrations of NPs (0-40  $\mu$ M) in DMEM medium were added to the wells respectively for 4 h. The cells were then subjected to 808 nm laser irradiation (0.3 W/cm<sup>2</sup>) for 20 min. 100  $\mu$ L of MTT solution (0.5 mg ml<sup>-1</sup>) in DMEM was added to each well after a further 24 h of incubation, and the cells were then incubated at 37 °C for an additional 4 h. After cautiously sucking off the medium, each well was given 100  $\mu$ L of DMSO to dissolve the formazan crystals that had formed, and a microplate reader was used to determine the absorbance at 490 nm.<sup>11-12</sup> The following equation was used to determine the cell viability:

Cell viability (%) = (OD<sub>dye</sub>- OD<sub>blank</sub>/OD<sub>control</sub> - OD<sub>blank</sub>) × 100%

#### Dead/Live Cell Co-Staining Fluorescence Imaging

4T1 cells were planted into confocal dishes, cultured for 24 h, and then divided into the four groups: the control group, the light group, the dye-NPs group, and the dye-NPs plus light group. After 2 h, cells were stained with calcein AM and PI doublestaining kits and took pictures using confocal laser scanning microscopy.<sup>13-14</sup> The concentration of dye-NPs is 30  $\mu$ M. A 20 min exposure was performed using a 0.3 W/cm<sup>2</sup> NIR laser at 808 nm. Excited was set at 488 nm, detected at 500-550 nm for calcein AM channel and 600-700 nm for PI channel.

#### Flow cytometry experiments

The group of cells and the setting of dye-NPs concentration and light intensity were referred to the double-staining experiment. Using the Annexin V-FITC/propidium iodide (PI) Apoptosis Detection Kit, cells were digested and dispersed into Bind Buffer to produce a single cell suspension after 2 h of treatment. <sup>15-16</sup> The treated cells were collected via trypsinization, and the Annexin V-FITC apoptosis detection kit was utilized to determine the extent of apoptosis (Beyotime Biotechnology).

#### **Synthesis**



Synthesis of (E)-1-(4-(dimethylamino)phenyl)-4,4-dimethylpent-2-en-1-one 1

pivalaldehyde (2 ml, 18.4 mmol) was added to 1-(4-(dimethylamino)phenyl)ethan-1-one (3 g, 18.4 mmol) in 30 ml methanol. Then 4 g KOH in 2 ml H<sub>2</sub>O was added to the mixture, and this mixture was refluxed for 24 h. After cooling to room temperature, the mixture was extracted with  $CH_2Cl_2$  (2 × 50 ml), and the organic layer was washed with brine (2 × 50 ml) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvents were removed by evaporation, and the resulting crude mixture was separated by column chromatography ( $CH_2Cl_2/n$ -hexane =1:3) to afford light yellow solids as compound **1** (3.49 g, 15.1 mmol, 82%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.91 (d, <sup>3</sup>*J* = 9.2 Hz, 2H), 7.01 (d, <sup>3</sup>*J* = 15.6 Hz, 1H), 6.82 (d, <sup>3</sup>*J* = 15.6 Hz, 1H), 6.67 (d, <sup>3</sup>*J* = 9.2 Hz, 2H), 3.05 (s, 6H), 1.14 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): 189.1, 157.0, 153.3, 130.8, 126.1, 120.6, 110.8, 40.1, 34.0, 29.0.

# Synthesis of 1-(4-(dimethylamino)phenyl)-4,4-dimethyl-3-(nitromethyl)pentan-1-one **2**

Diethylamine (9 ml) and nitromethane (8 ml) were added to compound **1** (3.49 g, 15.1 mmol) in anhydrous methanol (40 ml). The mixture was refluxed for 72 h. After cooling to room temperature, the mixture was extracted with  $CH_2Cl_2$  (2 × 50 ml), and the organic layer was washed with brine (2 × 50 ml) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under reduced pressure, and resulting crude mixture was separated by column chromatography ( $CH_2Cl_2:n$ -hexane = 3:2) to afford compound **2** (1.81 g, 6.19 mmol, 41%) as orange solid powder. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.87 (d, <sup>3</sup>*J* = 9.2 Hz, 2H), 6.65 (d, <sup>3</sup>*J* = 9.2 Hz, 2H), 4.54 (dd, <sup>2</sup>*J* = 12.8 Hz, <sup>3</sup>*J* = 6.8 Hz, 1H), 4.39 (dd, <sup>2</sup>*J* = 12.8 Hz, <sup>3</sup>*J* = 6.8 Hz, 1H), 3.05 (s, 6H), 2.92-2.99 (m, 1H), 2.87 (dd, <sup>2</sup>*J* = 16.0 Hz, <sup>3</sup>*J* = 8.0 Hz, 1H), 0.97 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): 196.1, 153.6, 130.3, 124.7, 110.7, 42.4, 40.1, 36.3, 33.4, 29.7, 27.5.

#### Synthesis of dye NMeBu

NH<sub>4</sub>OAc (15 g, 194.5 mmol) was added to compound **2** (1.81 g, 6.19 mmol) in anhydrous methanol (30 ml). The mixture was refluxed for 24 h. After cooling to room temperature, the mixture was extracted with  $CH_2Cl_2$  (2 × 50 ml), and the organic layer was washed with brine (2 × 50 ml) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After the solvent was removed under reduced pressure, and resulting crude mixture was separated by column chromatography ( $CH_2Cl_2$ : *n*-hexane =1:2) to afford the precursor (1.56 g, 3.15 mmol) as dark green solid powder. This precursor was dissolved in 30 ml anhydrous  $ClCH_2CH_2Cl$ . Triethylamine (0.5 ml, 3.6 mmol) was added and stirred at room temperature for 30 min, followed by dropwise addition of  $BF_3 \cdot Et_2O$  (1 ml, 7.9 mmol) with stirring at room temperature for 30 min. The mixture was then heated in 75 °C for 2 h. After cooling to room temperature, the mixture was extracted with  $CH_2Cl_2$  (2 × 50 ml), and the organic layer was washed with brine (2 × 50 ml) and dried over anhydrous  $Na_2SO_4$ . After solvent removal by evaporation, and the resulting crude product was separated by column chromatography ( $CH_2Cl_2/n$ -hexane = 2:3) to afford dye **NMeBu** (0.667 g, 1.23 mmol, 19%) as yellowish brown solid powder with metallic luster. <sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ):  $\delta$  (ppm) 8.02 (d, <sup>3</sup>J = 8.8 Hz, 4H), 6.73 (d, <sup>3</sup>J = 8.8 Hz, 4H), 6.60 (s, 2H), 3.05 (s, 12H), 1.47 (s, 18H). <sup>13</sup>C NMR (125 MHz,  $CDCl_3$ ): 155.4, 153.8, 151.6, 143.3, 131.5, 119.6, 118.0, 111.8, 40.2, 33.1, 31.1. HRMS (ESI) m/z calcd for  $C_{32}H_{40}BF_2N_5Na^+$  (M+Na)<sup>+</sup> 566.32370, found 566.32172.

# 2 Figures and Tables



**Fig. S1** a) Absorption spectra of **NMeBu** in different solvents; b) Emission spectra of **NMeBu** in different solvents. Solvents included DCM, DMF, DMSO, Toluene, THF, ACN, EtOAc and *n*-hexane.

| Solvents         | $\lambda_{abs}$ [nm]/ $\lambda_{em}$ [nm] | Stokes shift (nm) | FWHM (nm) | ε [M <sup>-1</sup> cm <sup>-1</sup> ] |
|------------------|-------------------------------------------|-------------------|-----------|---------------------------------------|
| DCM              | 748/805                                   | 57                | 87.63     | 86000                                 |
| DMF              | 772/828                                   | 56                | 91.98     | 85500                                 |
| DMSO             | 782/837                                   | 55                | 96.15     | 85000                                 |
| Toluene          | 750/787                                   | 37                | 73.66     | 86500                                 |
| THF              | 752/800                                   | 48                | 81.75     | 86300                                 |
| ACN              | 752/819                                   | 67                | 95.87     | 86300                                 |
| EtOAc            | 746/796                                   | 50                | 85.32     | 85000                                 |
| <i>n</i> -hexane | 720/758                                   | 38                | 62.40     | 86100                                 |

#### Table S1 Spectroscopic properties of NMeBu in various solvents at 298 K.



Fig. S2 The colors of dye NMeBu in different solvents under sunlight.



Fig. S3 The colors of dye NMeBu in different pH=7-1 and 1-2 M HCl under sunlight.



**Fig. S4** Absorption Intensities of **NMeBu**-NPs in the aqueous solution for 0, 3, 6 and 9 days at room temperature.



Fig. S5 Fluorescence spectrum of NMeBu-NPs in aqueous solution.



**Fig. S6** Absorption spectra of DPBF and dye **NMeBu** under 30 min irradiation in toluene solution.



Fig. S7 Infrared thermal images of 80  $\mu$ M NMeBu-NPs under laser irradiation (808 nm, 0.8 W/cm<sup>2</sup>) for 1, 2, 3, 4, 5 min.



**Fig. S8** Temperature of pure aqueous solution under various power density (0.4, 0.6, 0.8 W/cm<sup>2</sup>) radiation within 5 min.



**Fig. S9** The system time constant for **NMeBu** heat transfer was determined by plotting linear time data from the cooling phase of the system against the negative natural logarithm of the temperature of the system driving force.

**3 NMR and HRMS** 



 $^{13}\text{C}$  NMR of  $\boldsymbol{1}$ 







#### <sup>1</sup>H NMR of **NMeBu**



<sup>&</sup>lt;sup>13</sup>C NMR of **NMeBu** 



NMeBu: HRMS (ESI) m/z calcd for  $C_{32}H_{40}BF_2N_5Na^{*}$  (M+Na)\* 566.32370,found

566.32172.

# 4 X-ray data of NMeBu



Table 1 Crystal data and structure refinement for tbu-scy.

| Identification code                  | tbu-scy                                                                                |
|--------------------------------------|----------------------------------------------------------------------------------------|
| Empirical formula                    | $C_{32}H_{40}BF_2N_5$                                                                  |
| Formula weight                       | 543.50                                                                                 |
| Temperature/K                        | 169.99(10)                                                                             |
| Crystal system                       | monoclinic                                                                             |
| Space group                          | P2 <sub>1</sub> /c                                                                     |
| a/Å                                  | 22.9511(8)                                                                             |
| b/Å                                  | 11.1234(4)                                                                             |
| c/Å                                  | 11.6931(4)                                                                             |
| α/°                                  | 90                                                                                     |
| β/°                                  | 91.289(3)                                                                              |
| $\gamma/^{\circ}$                    | 90                                                                                     |
| Volume/Å <sup>3</sup>                | 2984.43(18)                                                                            |
| Z                                    | 4                                                                                      |
| $ ho_{calc}g/cm^3$                   | 1.210                                                                                  |
| $\mu/mm^{-1}$                        | 0.644                                                                                  |
| F(000)                               | 1160.0                                                                                 |
| Crystal size/mm <sup>3</sup>         | $0.15 \times 0.13 \times 0.11$                                                         |
| Radiation                            | Cu Ka ( $\lambda = 1.54184$ )                                                          |
| $2\Theta$ range for data collection/ | <sup>o</sup> 7.706 to 147.668                                                          |
| Index ranges                         | $\textbf{-28} \leq h \leq 27, \textbf{-13} \leq k \leq 7, \textbf{-14} \leq l \leq 13$ |
| Reflections collected                | 11311                                                                                  |
| Independent reflections              | 5849 [ $R_{int} = 0.0428, R_{sigma} = 0.0648$ ]                                        |
| Data/restraints/parameters           | 5849/0/371                                                                             |
| Goodness-of-fit on F <sup>2</sup>    | 0.995                                                                                  |

Final R indexes [I>= $2\sigma$  (I)] R<sub>1</sub> = 0.0523, wR<sub>2</sub> = 0.1269 Final R indexes [all data] R<sub>1</sub> = 0.0785, wR<sub>2</sub> = 0.1468 Largest diff. peak/hole / e Å<sup>-3</sup> 0.20/-0.21

#### Crystal structure determination of [tbu-scy]

**Crystal Data** for  $C_{32}H_{40}BF_2N_5$  (M=543.50 g/mol): monoclinic, space group  $P2_1/c$  (no. 14), a = 22.9511(8) Å, b = 11.1234(4) Å, c = 11.6931(4) Å,  $\beta = 91.289(3)^\circ$ , V = 2984.43(18) Å<sup>3</sup>, Z = 4, T = 169.99(10) K,  $\mu$ (Cu K $\alpha$ ) = 0.644 mm<sup>-1</sup>, Dcalc = 1.210 g/cm<sup>3</sup>, 11311 reflections measured (7.706°  $\leq 2\Theta \leq 147.668^\circ$ ), 5849 unique ( $R_{int} = 0.0428$ ,  $R_{sigma} = 0.0648$ ) which were used in all calculations. The final  $R_1$  was 0.0523 (I >2 $\sigma$ (I)) and  $wR_2$  was 0.1468 (all data).

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for tbu-scy.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{IJ}$  tensor.

| Atom | x          | У          | z          | U(eq)   |
|------|------------|------------|------------|---------|
| F1   | 3175.6(5)  | 5583.6(10) | 3242.8(10) | 31.4(3) |
| F2   | 2906.5(5)  | 3665.0(10) | 3667.9(10) | 35.3(3) |
| N1   | 1626.9(7)  | 5029.1(15) | 1804.4(14) | 28.1(4) |
| N2   | 2167.9(7)  | 5224.0(15) | 3589.2(14) | 27.0(4) |
| N3   | 2631.5(7)  | 4408.9(14) | 1829.3(13) | 25.3(3) |
| N4   | 3460.1(9)  | 6031.3(18) | 8678.6(16) | 43.7(5) |
| N5   | 5284.7(8)  | 1977.9(18) | 1645.8(16) | 39.6(5) |
| C1   | 2433.6(9)  | 5783.3(19) | 5639.1(17) | 31.5(4) |
| C2   | 2308.0(10) | 6614.9(19) | 6506.8(18) | 34.7(5) |
| C3   | 2640.0(10) | 6709(2)    | 7495.1(18) | 37.0(5) |
| C4   | 3130.4(10) | 5960(2)    | 7692.9(18) | 36.2(5) |
| C5   | 3264.6(10) | 5139(2)    | 6824.1(19) | 41.6(5) |
| C6   | 2925.4(10) | 5058(2)    | 5839.6(19) | 40.2(5) |
| C7   | 2048.2(9)  | 5706.9(18) | 4641.1(17) | 30.0(4) |
| C8   | 1461.9(9)  | 6129(2)    | 4603.3(18) | 34.2(5) |
| С9   | 1216.7(9)  | 5910.4(19) | 3543.3(18) | 31.3(4) |
| C10  | 1665.7(8)  | 5355.3(18) | 2896.4(17) | 28.6(4) |
| C11  | 2084.0(8)  | 4565.2(17) | 1293.1(17) | 26.6(4) |
| C12  | 2103.3(9)  | 4101.0(18) | 153.2(17)  | 28.7(4) |
| C13  | 2655.4(9)  | 3667.0(18) | 33.5(17)   | 29.7(4) |
| C14  | 2979.4(8)  | 3829.5(17) | 1073.2(16) | 26.6(4) |
| C15  | 3576.1(8)  | 3402.9(17) | 1269.6(16) | 26.9(4) |
|      |            |            |            |         |

| Atom | x          | у          | z          | U(eq)   |
|------|------------|------------|------------|---------|
| C16  | 3942.7(10) | 3688(2)    | 2200(2)    | 42.8(6) |
| C17  | 4497.3(10) | 3230(2)    | 2321(2)    | 46.8(6) |
| C18  | 4730.3(9)  | 2434(2)    | 1524.4(17) | 31.5(4) |
| C19  | 4367.4(9)  | 2154.6(19) | 580.8(18)  | 33.3(5) |
| C20  | 3815.5(9)  | 2627.9(18) | 462.3(18)  | 30.9(4) |
| C21  | 5592.5(10) | 2043(2)    | 2743.9(19) | 43.9(6) |
| C22  | 5504.5(10) | 1168(2)    | 800(2)     | 45.3(6) |
| C23  | 3969.9(11) | 5276(2)    | 8839(2)    | 50.0(6) |
| C24  | 3245.9(12) | 6690(2)    | 9665(2)    | 48.8(6) |
| C25  | 599.6(9)   | 6158(2)    | 3122.7(19) | 37.1(5) |
| C26  | 306.7(10)  | 4965(2)    | 2771(2)    | 51.6(7) |
| C27  | 609.4(10)  | 7015(2)    | 2090(2)    | 45.4(6) |
| C28  | 249.6(10)  | 6749(3)    | 4069(2)    | 50.8(7) |
| C29  | 1595.2(9)  | 4026(2)    | -698.9(18) | 35.2(5) |
| C30  | 1801.6(11) | 3562(2)    | -1855(2)   | 47.4(6) |
| C31  | 1140.8(12) | 3163(3)    | -229(2)    | 58.3(7) |
| C32  | 1324.3(11) | 5278(2)    | -879(2)    | 48.6(6) |
| B1   | 2738.2(10) | 4718.6(19) | 3105.5(19) | 25.0(4) |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for tbu-scy.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{IJ}$  tensor.

Table 3 Anisotropic Displacement Parameters (Å2×103) for tbu-scy. The Anisotropicdisplacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | $U_{22}$ | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|
| F1   | 25.5(6)         | 33.5(6)  | 35.2(6)         | -7.2(5)         | 0.2(5)          | -4.3(5)         |
| F2   | 46.0(7)         | 28.6(6)  | 31.1(6)         | 2.1(5)          | -5.7(5)         | 7.0(5)          |
| N1   | 23.8(9)         | 32.1(8)  | 28.5(9)         | 1.1(7)          | 0.2(7)          | -0.7(7)         |
| N2   | 25.1(9)         | 31.4(8)  | 24.3(8)         | -1.0(7)         | -0.6(6)         | 0.8(7)          |
| N3   | 21.9(8)         | 27.7(8)  | 26.1(8)         | -1.3(6)         | -0.3(6)         | 1.0(6)          |
| N4   | 47.4(12)        | 50.6(11) | 32.9(10)        | -4.6(9)         | -7.6(8)         | 0.2(10)         |
| N5   | 27.9(10)        | 53.7(11) | 36.9(10)        | -11.6(9)        | -6.9(7)         | 13.4(9)         |
| C1   | 29.9(11)        | 38.3(11) | 26.5(10)        | -2.1(9)         | 2.6(8)          | -0.2(9)         |
| C2   | 33.0(12)        | 36.9(11) | 34.2(11)        | -3.2(9)         | 2.7(9)          | 1.3(9)          |
| C3   | 41.3(13)        | 37.8(11) | 32.0(11)        | -7.6(9)         | 2.6(9)          | -0.2(10)        |
| C4   | 37.1(12)        | 43.7(12) | 27.9(10)        | -0.4(9)         | -0.3(9)         | -7.0(10)        |
| C5   | 38.5(13)        | 54.5(14) | 31.8(11)        | -3.1(11)        | -1.5(9)         | 10.0(11)        |
| C6   | 37.3(12)        | 52.3(13) | 30.9(11)        | -7.9(10)        | -0.3(9)         | 9.4(11)         |
|      |                 |          |                 |                 |                 |                 |

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C7   | 28.0(11)        | 33.7(10)        | 28.6(10)        | -1.1(8)         | 3.5(8)          | -0.1(8)         |
| C8   | 26.7(11)        | 42.1(11)        | 34.0(11)        | -5.4(9)         | 5.3(8)          | 1.4(9)          |
| C9   | 23.9(10)        | 35.6(10)        | 34.6(11)        | 0.7(9)          | 4.3(8)          | 0.9(8)          |
| C10  | 21.1(10)        | 32.8(10)        | 31.7(10)        | 1.8(8)          | -1.9(8)         | -0.3(8)         |
| C11  | 21.2(10)        | 28.5(9)         | 29.8(10)        | 2.0(8)          | -2.3(7)         | 0.2(8)          |
| C12  | 27.0(10)        | 28.7(9)         | 30.2(10)        | -1.7(8)         | -2.3(8)         | -0.7(8)         |
| C13  | 27.4(11)        | 33.2(10)        | 28.3(10)        | -3.7(8)         | -0.8(8)         | 1.5(8)          |
| C14  | 26.4(10)        | 26.0(9)         | 27.3(10)        | -1.2(8)         | 0.4(8)          | -0.3(8)         |
| C15  | 24.1(10)        | 28.3(9)         | 28.2(10)        | -0.8(8)         | -0.9(7)         | 0.8(8)          |
| C16  | 30.3(12)        | 59.3(15)        | 38.5(12)        | -21.1(11)       | -5.5(9)         | 11.2(11)        |
| C17  | 32.7(12)        | 69.1(16)        | 38.0(13)        | -22.6(12)       | -11.5(10)       | 13.3(12)        |
| C18  | 26.3(11)        | 37.3(10)        | 30.7(11)        | -3.2(9)         | -2.6(8)         | 4.0(9)          |
| C19  | 34.3(12)        | 33.4(10)        | 32.2(11)        | -8.8(9)         | -1.5(8)         | 6.4(9)          |
| C20  | 29.3(11)        | 31.0(10)        | 32.2(11)        | -5.2(8)         | -5.3(8)         | 2.2(8)          |
| C21  | 33.0(12)        | 60.0(15)        | 38.3(13)        | -7.5(11)        | -9.1(10)        | 12.7(11)        |
| C22  | 36.3(13)        | 58.3(15)        | 41.0(13)        | -10.9(11)       | -5.0(10)        | 19.5(11)        |
| C23  | 52.6(16)        | 57.0(15)        | 39.7(13)        | 2.5(12)         | -13.7(11)       | 2.4(13)         |
| C24  | 70.9(18)        | 42.1(12)        | 33.0(12)        | -6.0(11)        | -10.7(11)       | -2.0(12)        |
| C25  | 24.0(11)        | 46.1(12)        | 41.1(12)        | -2.5(10)        | 1.1(9)          | 2.8(9)          |
| C26  | 29.2(13)        | 59.3(16)        | 66.2(18)        | -7.0(13)        | 0.7(11)         | -8.4(11)        |
| C27  | 36.8(13)        | 53.5(14)        | 45.9(14)        | 2.8(11)         | -1.7(10)        | 13.6(11)        |
| C28  | 28.3(12)        | 76.4(18)        | 48.0(14)        | -6.7(14)        | 5.7(10)         | 12.1(12)        |
| C29  | 28.8(11)        | 44.2(12)        | 32.3(11)        | -4.4(10)        | -6.5(8)         | 1.3(9)          |
| C30  | 41.1(14)        | 62.4(16)        | 38.1(13)        | -12.2(12)       | -11.7(10)       | 7.4(12)         |
| C31  | 46.0(15)        | 75.4(19)        | 52.9(16)        | -2.5(15)        | -10.4(12)       | -24.8(14)       |
| C32  | 42.9(14)        | 60.0(15)        | 42.4(13)        | -1.6(12)        | -10.2(11)       | 15.7(12)        |
| B1   | 25.3(11)        | 23.5(10)        | 26.0(11)        | 0.3(9)          | -1.3(8)         | 0.1(8)          |

Table 3 Anisotropic Displacement Parameters (Å2×103) for tbu-scy. The Anisotropicdisplacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

# Table 4 Bond Lengths for tbu-scy.

| Atom Atom |     | Length/Å | Aton | n Atom | Length/Å |  |
|-----------|-----|----------|------|--------|----------|--|
| F1        | B1  | 1.397(2) | C5   | C6     | 1.378(3) |  |
| F2        | B1  | 1.394(2) | C7   | C8     | 1.425(3) |  |
| N1        | C10 | 1.328(3) | C8   | С9     | 1.371(3) |  |
| N1        | C11 | 1.324(3) | C9   | C10    | 1.432(3) |  |
| N2        | C7  | 1.376(2) | C9   | C25    | 1.514(3) |  |

# Table 4 Bond Lengths for tbu-scy.

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| N2   | C10  | 1.401(2) | C11  | C12  | 1.431(3) |
| N2   | B1   | 1.543(3) | C12  | C13  | 1.366(3) |
| N3   | C11  | 1.403(2) | C12  | C29  | 1.519(3) |
| N3   | C14  | 1.366(2) | C13  | C14  | 1.422(3) |
| N3   | B1   | 1.546(3) | C14  | C15  | 1.463(3) |
| N4   | C4   | 1.367(3) | C15  | C16  | 1.396(3) |
| N4   | C23  | 1.449(3) | C15  | C20  | 1.400(3) |
| N4   | C24  | 1.462(3) | C16  | C17  | 1.375(3) |
| N5   | C18  | 1.374(3) | C17  | C18  | 1.400(3) |
| N5   | C21  | 1.453(3) | C18  | C19  | 1.402(3) |
| N5   | C22  | 1.437(3) | C19  | C20  | 1.376(3) |
| C1   | C2   | 1.408(3) | C25  | C26  | 1.540(3) |
| C1   | C6   | 1.403(3) | C25  | C27  | 1.539(3) |
| C1   | C7   | 1.451(3) | C25  | C28  | 1.530(3) |
| C2   | C3   | 1.374(3) | C29  | C30  | 1.532(3) |
| C3   | C4   | 1.415(3) | C29  | C31  | 1.529(3) |
| C4   | C5   | 1.406(3) | C29  | C32  | 1.538(3) |

# Table 5 Bond Angles for tbu-scy.

| Atom | n Atom | Atom | Ang | gle/°      | Atom | Atom | Atom | Ang | gle/°      |
|------|--------|------|-----|------------|------|------|------|-----|------------|
| C11  | N1     | C10  |     | 120.25(17) | C11  | C12  | C29  |     | 126.26(18) |
| C7   | N2     | C10  |     | 107.34(16) | C13  | C12  | C11  |     | 105.73(17) |
| C7   | N2     | B1   |     | 131.15(17) | C13  | C12  | C29  |     | 127.85(19) |
| C10  | N2     | B1   |     | 121.28(16) | C12  | C13  | C14  |     | 109.62(18) |
| C11  | N3     | B1   |     | 121.66(16) | N3   | C14  | C13  |     | 108.13(17) |
| C14  | N3     | C11  |     | 107.46(16) | N3   | C14  | C15  |     | 127.61(17) |
| C14  | N3     | B1   |     | 130.37(16) | C13  | C14  | C15  |     | 124.24(17) |
| C4   | N4     | C23  |     | 120.4(2)   | C16  | C15  | C14  |     | 126.46(18) |
| C4   | N4     | C24  |     | 120.3(2)   | C16  | C15  | C20  |     | 115.23(18) |
| C23  | N4     | C24  |     | 118.24(19) | C20  | C15  | C14  |     | 118.31(17) |
| C18  | N5     | C21  |     | 120.22(18) | C17  | C16  | C15  |     | 122.4(2)   |
| C18  | N5     | C22  |     | 119.92(18) | C16  | C17  | C18  |     | 122.2(2)   |
| C22  | N5     | C21  |     | 117.91(18) | N5   | C18  | C17  |     | 122.10(19) |
| C2   | C1     | C7   |     | 119.16(19) | N5   | C18  | C19  |     | 122.12(19) |
| C6   | C1     | C2   |     | 115.8(2)   | C17  | C18  | C19  |     | 115.76(19) |
| C6   | C1     | C7   |     | 125.05(19) | C20  | C19  | C18  |     | 121.58(19) |

| Atom | n Aton | n Atom | Angle/°    | Atom Atom Atom |     |     | Angle/°    |
|------|--------|--------|------------|----------------|-----|-----|------------|
| C3   | C2     | C1     | 122.5(2)   | C19            | C20 | C15 | 122.83(19) |
| C2   | C3     | C4     | 121.1(2)   | C9             | C25 | C26 | 109.25(19) |
| N4   | C4     | C3     | 121.8(2)   | C9             | C25 | C27 | 109.72(18) |
| N4   | C4     | C5     | 121.4(2)   | C9             | C25 | C28 | 110.24(19) |
| C5   | C4     | C3     | 116.8(2)   | C27            | C25 | C26 | 109.8(2)   |
| C6   | C5     | C4     | 121.1(2)   | C28            | C25 | C26 | 109.3(2)   |
| C5   | C6     | C1     | 122.6(2)   | C28            | C25 | C27 | 108.6(2)   |
| N2   | C7     | C1     | 127.72(18) | C12            | C29 | C30 | 110.45(18) |
| N2   | C7     | C8     | 107.96(17) | C12            | C29 | C31 | 108.58(18) |
| C8   | C7     | C1     | 124.32(18) | C12            | C29 | C32 | 110.00(18) |
| C9   | C8     | C7     | 109.73(18) | C30            | C29 | C32 | 108.5(2)   |
| C8   | C9     | C10    | 105.56(18) | C31            | C29 | C30 | 109.4(2)   |
| C8   | C9     | C25    | 128.55(19) | C31            | C29 | C32 | 109.9(2)   |
| C10  | C9     | C25    | 125.87(19) | F1             | B1  | N2  | 108.67(16) |
| N1   | C10    | N2     | 124.31(18) | F1             | B1  | N3  | 111.23(16) |
| N1   | C10    | C9     | 126.29(18) | F2             | B1  | F1  | 109.51(16) |
| N2   | C10    | C9     | 109.38(17) | F2             | B1  | N2  | 111.20(17) |
| N1   | C11    | N3     | 123.89(18) | F2             | B1  | N3  | 107.71(16) |
| N1   | C11    | C12    | 127.07(18) | N2             | B1  | N3  | 108.52(16) |
| N3   | C11    | C12    | 109.00(17) |                |     |     |            |

# Table 5 Bond Angles for tbu-scy.

# Table 6 Torsion Angles for tbu-scy.

| А  | B   | С   | D   | Angle/°     | А   | B   | С   | D   | Angle/°     |
|----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|
| N1 | C11 | C12 | C13 | -176.9(2)   | C11 | N3  | C14 | C15 | -175.79(18) |
| N1 | C11 | C12 | C29 | -1.2(3)     | C11 | N3  | B1  | F1  | -121.13(18) |
| N2 | C7  | C8  | C9  | 0.2(2)      | C11 | N3  | B1  | F2  | 118.85(18)  |
| N3 | C11 | C12 | C13 | 0.7(2)      | C11 | N3  | B1  | N2  | -1.6(2)     |
| N3 | C11 | C12 | C29 | 176.28(18)  | C11 | C12 | C13 | C14 | 0.9(2)      |
| N3 | C14 | C15 | C16 | -12.1(3)    | C11 | C12 | C29 | C30 | 175.8(2)    |
| N3 | C14 | C15 | C20 | 167.74(19)  | C11 | C12 | C29 | C31 | -64.2(3)    |
| N4 | C4  | C5  | C6  | 179.0(2)    | C11 | C12 | C29 | C32 | 56.1(3)     |
| N5 | C18 | C19 | C20 | -179.2(2)   | C12 | C13 | C14 | N3  | -2.2(2)     |
| C1 | C2  | C3  | C4  | -0.2(3)     | C12 | C13 | C14 | C15 | 176.20(18)  |
| C1 | C7  | C8  | C9  | -179.31(19) | C13 | C12 | C29 | C30 | -9.5(3)     |
| C2 | C1  | C6  | C5  | 0.5(3)      | C13 | C12 | C29 | C31 | 110.4(3)    |
| C2 | C1  | C7  | N2  | 160.5(2)    | C13 | C12 | C29 | C32 | -129.2(2)   |

# Table 6 Torsion Angles for tbu-scy.

| A   | B    | С   | D     | Ar  | gle/°     | A   | В   | С   | D   | Angle/°     |
|-----|------|-----|-------|-----|-----------|-----|-----|-----|-----|-------------|
| C2  | C1   | C7  | C8    |     | -20.0(3)  | C13 | C14 | C15 | C16 | 169.8(2)    |
| C2  | C3   | C4  | N4    |     | -179.0(2) | C13 | C14 | C15 | C20 | -10.4(3)    |
| C2  | C3   | C4  | C5    |     | 1.1(3)    | C14 | N3  | C11 | N1  | 175.58(18)  |
| C3  | C4   | C5  | C6    |     | -1.2(3)   | C14 | N3  | C11 | C12 | -2.0(2)     |
| C4  | C5   | C6  | C1    |     | 0.4(4)    | C14 | N3  | B1  | F1  | 68.1(2)     |
| C6  | C1   | C2  | C3    |     | -0.6(3)   | C14 | N3  | B1  | F2  | -51.9(3)    |
| C6  | C1   | C7  | N2    |     | -21.5(3)  | C14 | N3  | B1  | N2  | -172.35(18) |
| C6  | C1   | C7  | C8    |     | 157.9(2)  | C14 | C15 | C16 | C17 | 179.1(2)    |
| C7  | N2   | C10 | )N1   | 1   | 77.47(18) | C14 | C15 | C20 | C19 | -178.45(19) |
| C7  | N2   | C10 | ) C9  |     | -1.3(2)   | C15 | C16 | C17 | C18 | -0.7(4)     |
| C7  | N2   | B1  | F1    |     | -53.5(3)  | C16 | C15 | C20 | C19 | 1.4(3)      |
| C7  | N2   | B1  | F2    |     | 67.2(3)   | C16 | C17 | C18 | N5  | 179.9(2)    |
| C7  | N2   | B1  | N3    | -1  | 74.55(18) | C16 | C17 | C18 | C19 | 1.4(4)      |
| C7  | C1   | C2  | C3    |     | 177.6(2)  | C17 | C18 | C19 | C20 | -0.7(3)     |
| C7  | C1   | C6  | C5    |     | -177.5(2) | C18 | C19 | C20 | C15 | -0.7(3)     |
| C7  | C8   | C9  | C1    | 0   | -1.0(2)   | C20 | C15 | C16 | C17 | -0.7(4)     |
| C7  | C8   | C9  | C2    | 5   | 177.5(2)  | C21 | N5  | C18 | C17 | 16.5(3)     |
| C8  | C9   | C10 | )N1   |     | -177.3(2) | C21 | N5  | C18 | C19 | -165.0(2)   |
| C8  | C9   | C10 | ) N2  |     | 1.5(2)    | C22 | N5  | C18 | C17 | -179.7(2)   |
| C8  | C9   | C25 | 5 C 2 | 6   | -118.9(3) | C22 | N5  | C18 | C19 | -1.3(3)     |
| C8  | C9   | C25 | 5 C 2 | 7   | 120.7(2)  | C23 | N4  | C4  | C3  | -178.1(2)   |
| C8  | C9   | C25 | 5 C 2 | 8   | 1.2(3)    | C23 | N4  | C4  | C5  | 1.7(3)      |
| C10 | N1   | C11 | N3    |     | -1.5(3)   | C24 | N4  | C4  | C3  | 13.6(3)     |
| C10 | N1   | C11 | C1    | 2 1 | 75.68(19) | C24 | N4  | C4  | C5  | -166.6(2)   |
| C10 | ) N2 | C7  | C1    |     | -179.8(2) | C25 | C9  | C10 | N1  | 4.2(3)      |
| C10 | N2   | C7  | C8    |     | 0.7(2)    | C25 | C9  | C10 | N2  | -177.06(19) |
| C10 | N2   | B1  | F1    | 1   | 20.25(19) | C29 | C12 | C13 | C14 | -174.62(19) |
| C10 | N2   | B1  | F2    | -1  | 19.14(19) | B1  | N2  | C7  | C1  | -5.4(3)     |
| C10 | N2   | B1  | N3    |     | -0.8(2)   | B1  | N2  | C7  | C8  | 175.08(19)  |
| C10 | ) C9 | C25 | 5 C 2 | 6   | 59.3(3)   | B1  | N2  | C10 | N1  | 2.4(3)      |
| C10 | ) C9 | C25 | 5 C 2 | 7   | -61.1(3)  | B1  | N2  | C10 | C9  | -176.39(17) |
| C10 | ) C9 | C25 | 5 C 2 | 8   | 179.4(2)  | B1  | N3  | C11 | N1  | 3.0(3)      |
| C11 | N1   | C10 | ) N2  |     | -1.3(3)   | B1  | N3  | C11 | C12 | -174.62(16) |
| C11 | N1   | C10 | ) C9  |     | 177.3(2)  | B1  | N3  | C14 | C13 | 174.27(18)  |
| C11 | N3   | C14 | C1    | 3   | 2.5(2)    | B1  | N3  | C14 | C15 | -4.1(3)     |

| Atom | x       | у       | ζ        | U(eq) |
|------|---------|---------|----------|-------|
| H2   | 1981.01 | 7130.83 | 6405.08  | 42    |
| Н3   | 2538.68 | 7286.81 | 8055.06  | 44    |
| Н5   | 3594.83 | 4630.22 | 6917.35  | 50    |
| H6   | 3028.72 | 4487.99 | 5273.95  | 48    |
| H8   | 1269.9  | 6505.41 | 5219.28  | 41    |
| H13  | 2800.78 | 3310.97 | -641.29  | 36    |
| H16  | 3803.98 | 4217.99 | 2769.53  | 51    |
| H17  | 4729.71 | 3460.55 | 2966.82  | 56    |
| H19  | 4505.91 | 1625.77 | 9.77     | 40    |
| H20  | 3587.09 | 2419.93 | -195.9   | 37    |
| H21A | 5639.58 | 2887.29 | 2968.56  | 66    |
| H21B | 5976.89 | 1668.69 | 2681.5   | 66    |
| H21C | 5368.51 | 1618.63 | 3322.2   | 66    |
| H22A | 5281.61 | 417.07  | 812.05   | 68    |
| H22B | 5916.25 | 997.79  | 970.58   | 68    |
| H22C | 5465.38 | 1538.02 | 41.7     | 68    |
| H23A | 3852.66 | 4428.85 | 8815.95  | 75    |
| H23B | 4156.55 | 5453.82 | 9582.24  | 75    |
| H23C | 4245.26 | 5433.94 | 8228.79  | 75    |
| H24A | 3248.12 | 7554.08 | 9500.92  | 73    |
| H24B | 3498.47 | 6526.46 | 10334.26 | 73    |
| H24C | 2847.4  | 6432.02 | 9823.03  | 73    |
| H26A | 514.32  | 4611.26 | 2129.45  | 77    |
| H26B | -99.76  | 5115.62 | 2539.22  | 77    |
| H26C | 319.01  | 4407.49 | 3420.3   | 77    |
| H27A | 801.79  | 7767.72 | 2314.21  | 68    |
| H27B | 208.99  | 7183.71 | 1828.35  | 68    |
| H27C | 823.51  | 6638.2  | 1468.56  | 68    |
| H28A | 244.15  | 6217.74 | 4736.73  | 76    |
| H28B | -150.49 | 6891.85 | 3790.75  | 76    |
| H28C | 430.89  | 7516.43 | 4283.93  | 76    |
| H30A | 2106.62 | 4093.46 | -2139.2  | 71    |
| H30B | 1472.38 | 3548.93 | -2403.49 | 71    |
| H30C | 1957.69 | 2747.03 | -1762.15 | 71    |
| H31A | 1317.43 | 2369.2  | -110.8   | 87    |
| H31B | 812.77  | 3096.09 | -776.73  | 87    |
| H31C | 1000.96 | 3469.95 | 500.53   | 87    |

Table 7 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Ų×10<sup>3</sup>) for tbu-scy.

| Atom | x       | У       | z        | U(eq) |  |
|------|---------|---------|----------|-------|--|
| H32A | 1176.07 | 5574.84 | -151.51  | 73    |  |
| H32B | 1002.91 | 5225.4  | -1442.57 | 73    |  |
| H32C | 1621.22 | 5832.91 | -1156.45 | 73    |  |

| Table 7 Hydrogen Atom Coordinates (Å | ×10 <sup>4</sup> ) and Isotropic Displacement Parameters |
|--------------------------------------|----------------------------------------------------------|
| $(Å^2 \times 10^3)$ for thu-scy.     |                                                          |

#### **Refinement model description**

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups

At 1.5 times of:

All C(H,H,H) groups

2.a Aromatic/amide H refined with riding coordinates:

```
C2(H2), C3(H3), C5(H5), C6(H6), C8(H8), C13(H13), C16(H16), C17(H17),
```

```
C19(H19), C20(H20)
```

2.b Idealised Me refined as rotating group:

```
C21(H21A,H21B,H21C), C22(H22A,H22B,H22C), C23(H23A,H23B,H23C), C24(H24A,H24B, H24C), C26(H26A,H26B,H26C), C27(H27A,H27B,H27C), C28(H28A,H28B,H28C), C30(H30A,
```

H30B,H30C), C31(H31A,H31B,H31C), C32(H32A,H32B,H32C)

This report has been created with Olex2, compiled on 2021.12.09 svn.r5202d8cf for OlexSys. Please <u>let us know</u> if there are any errors or if you would like to have additional features.

#### **5** References

1 Y. Guo, Y. Liang, Y. Wang, J. Zhang, C. Wang, Y. Sun, X. Feng and G. Zhao, *Dyes Pigm.*, **2022**, 208, 110791.

2 A. Upadhyay, P. Kundu, V. Ramu, P. Kondaiah and A. R. Chakravarty, *Inorg. Chem.*, 2022, **61**, 1335–1348.

3 W. Zhang, B. Li, H. Ma, L. Zhang, Y. Guan, Y. Zhang, X. Zhang, P. Jing and S. Yue, ACS Appl. Mater. Interfaces, 2016, **8**, 21465–21471.

4 Y. Zhang, C. Wen, Y. Liu, A. Li, Q. Guo, X. Zhang, L. Fu, S. Xu, D. Qiao, P. Zheng, W. Zhu and Q. Pan, *Chem. Eng. J.*, 2023, **470**, 144345.

5 W. Wang, Y. Gao, M. Zhang, Y. Li and B. Tang, ACS Nano, 2023, 17, 7394–7405.

6 S. Yao, Y. Chen, H. Xu, F. Qi, Y. Zhang, T. Yang, Y. Wu, H. Fang, W. He and Z. Guo, *Dyes Pigm.*, 2022, **206**, 110583.

7 H. Dang, D. Yin, Y. Tian, Q. Cheng, C. Teng, Y. Xu, and L. Yan, *J. Mater. Chem. B*, 2022, **10**, 5279-5290.

8 L. Gai, R. Zhang, X. Shi, Z. Ni, S. Wang, J. Zhang, H. Lu, and Z. Guo, *Chem. Sci.*, 2023, **14**, 1434-1442.

9 Y. Chu, X. Xu and Y. Wang, J. Phys. Chem. Lett., 2022, 13, 9564–9572.

10 C. Liu, M. Tian and W. Lin, J. Mater. Chem. B, 2020, 8, 752-757.

11 S. Xu, H. Liu, S. Huan, L. Yuan and X. Zhang, *Mater. Chem. Front.*, 2021, **5**, 1076-1089.

12 M. Shi, X. Liu, W. Pan, N. Li, and B. Tang, J. Mater. Chem. B, 2023, 11, 6478-6490.

13 Y. Xiao, D. Wang, B. Luo, X. Chen, Y. Yao, C. Song, M. Wu, P. Li, X. Li, H. Zhang, X. Zhu, X. Yang and J. Hu, *Nano Today*, 2022, **47**, 101632.

14 H. Bian, D. Ma, X. Zhang, K. Xin, Y. Yang, X. Peng and Y. Xiao, *Small*, 2021, **17**, 2100398.

15 Q. Wang, X. Zhang, Y. Sun, L. Wang, L. Ding, W. Zhu, W. Di and Y. Duan, *Biomaterials*, 2019, **212**, 73-86.

16 H. Ge, J. Du, S. Long, X. Xia, J. Zheng, N. Xu, Q. Yao, J. Fan and X. Peng, *Adv. Healthcare Mater.*, 2021, **11**, 2101449.