Supporting Information

3D Stem Cell Spheroids with Urchin-Like Hydroxyapatite Microparticles Enhance Osteogenesis of Stem Cells

Hongmei Liu, ^a Jianxin Ye, ^b Hui Hu, ^a Yuheng Song, ^a Huijun Qiang, ^a Junjun Wang, ^a Lei Zhou, ^b Xuefen Wang, ^a Xiang Fei, *^{ac} and Meifang Zhu^a

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

^b Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China

^c Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China

Corresponding author: xiangfei@dhu.edu.cn (X. Fei)

Supplementary Figures

Fig. S1 Morphologies of uHA under different temperatures.

Fig. S2 (a, b) SEM morphologies of uHA at low magnification topography (a) and high magnification topography (b). (c) The diameter distribution of uHA microparticles (n = 30). (d) TEM and EDS mapping images of uHA.

Fig. S3 Nanorods of commercial HA (a), synthesized HA (b) and amino acid-modified HA without EDTA (c).

Fig. S4 (a) Antibacterial properties and (b) corresponding antibacterial ratios of different samples (n=3).

Fig. S5 Antibacterial evaluation for the tested samples: (a) the untreated sample, (b) commercial HA nanorods, (c) home-synthesized HA nanorods and (d) E-uHA microparticles.

Fig. S6 Live-dead cell staining of hDPSCs under different culture time with different samples.

Untreated ^Δ 100 μm	10 μg/mL	100 μg/mL		
Dead	act _a			
200 μg/mL	300 μg/mL	400 μg/mL		
Dead 🔬				

Fig. S7 Live-dead cell staining of cell spheroids under different concentrations of EuHA.

Fig. S8 Live-dead cell staining of cell spheroids under different samples.

Fig. S9 Microparticles stained by rhodamine.

Fig. S10 Cell migration performance for pristine BMSC spheroids, BMSCs/uHA composite spheroids and BMSCs/E-uHA composite spheroids (n=10).

Supplementary Tables

Gene name	Forward primer	Reverse primer	
ALP	aagaagccettcacagccatc	tggagacgttctcccgttcac	
RUNX2	acgaggcaagagtttcactttg	ctttaatagctctgtggtaagtggc	
BMP-2	caagagacatgtgaggattagcagg	gcttccgctgtttgtgtttgg	
Actin	gacgttgacatccgtaaagacc	ctaggagccagggcagtaatct	

Table S1 Primers used for qRT-PCR.

 Table S2 Specific surface area and pore size of microparticles after calculation.

Sample	UHA	UHAE	
S_{BET} (m ² /g)	26.592	24.375 ↓	
Pore volume (cm ³ /g)	0.154	0.137 ↓	
Pore size (nm)	4.309	3.056↓	

Sample	UHA	UHAE
First loss (%wt)	2.905	3.104 ↑
Second loss (%wt)	3.181	3.547 ↑
Third loss (%wt)	0.824	0.548↓

 Table S3 Results of TG analysis of different samples.

Table S4 The element content of uHA and E-uHA characterized by XPS analysis.

Element (At%)	Са	Р	0	N	С
UHA	16.69	12.7	52.89	1.22	16.49
UHAE	11.31	8.72	40.21	0.51	39.25