Concentration-tuned Response to Selective Biogenic Amines using a Reusable Fluorophore: Monitoring Protein-rich Food Spoilage

Madhuparna Chakraborty,^a Pandiyan Sivasakthi,^b Pralok K. Samanta^b and Manab Chakravarty^{*a}

^aDepartment of Chemistry, Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India. E-mail: <u>manab@hyderabad.bits-pilani.ac.in</u>

^bDepartment of Chemistry, School of Sciences, GITAM University, Hyderabad-502329

Contents:

1.	UV-Vis spectra of TAA, TCN, and TCNA in different polar solvents (Fig-S1)	S 3
2.	Emission spectra of TAA and TCN in different polar solvents (Fig-S2)	S3
3.	Excitation, absorption, and emission profiles of TCNA and emission spectra of T	CNA
	in different polar solvents (Fig-S3)	S3
4.	Absorbance and emission titration spectra of TAA for AIE studies (Fig-S4)	S4
5.	Absorbance and emission titration spectra of TCN for AIE studies (Fig-S5)	S4
6.	Absorbance and emission titration spectra of TCNA for AIE studies (Fig-S6)	S4
7.	The I/I_0 plot for TAA, TCN and TCNA (Fig-S7)	S5
8.	Images of TAA and TCN with all amines in 10μ M 1,4-dioxane (Fig-S8)	S5
9.	Absorbance and emission titration spectra of aggregated TAA with different a	mine
	solutions (Fig-S9)	S6
10	Absorbance and emission titration spectra of aggregated TCN with different a	mine
	solutions (Fig-S10)	S6
11	Variation in emission maxima after gradual addition of amine solution (Table-S1)	S7
12	Absorbance spectra of TCNA upon gradual addition of Putrescine, Cadaverine	e and
	Spermidine (Fig-S11) S	7 - S8
13	Lifetime decay plot for TCNA in solution state after adding putrescine (Fig-S12)-	S 8
14	. Lifetime parameters of TCNA (Table-S2) SS	8-S9
15	. Variation in λ_{ex} (nm), λ_{emi} (nm), and absolute Φ_{f} (%) of thin films after exposu	ire to
	different amine vapors (Table-S3) S9	-S10
16	. Variation in λ_{ex} (nm) and $\Phi_{f}(\%)$ (Table - S4)	S10

17.	Practical LOD detection for putrescine using a 6L jar. (Fig S13A)	S11
18.	Difference in emission for SPM and CAD (Fig-S13B)	S11
19.	Normalized FL spectra of TCNA before and after exposing to amine and o	change of
	emission wavelength and QY with different concentrations (Fig-S14)	S12
20.	Variation in λ_{ex} (nm) and $\Phi_{f}(\%)$ after Spermidine addition (Table - S5)	S12
21.	Variation in λ_{ex} (nm) and $\Phi_{f}(\%)$ after the addition of different cadaverine volum - S6)	ne (Table S13
22.	FT-IR spectra of all the forms of TCNA at different stages after exposure to P	UT vapor
	(b) SEM images of mainly three distinctly visualized states (Fig S15)-	S13
23.	¹ H NMR experiment (Fig S16)	S14
24.	Solid state absorbance spectra of TCNA, TCNA Y and TCNA G (Fig-S17)	S15
25.	LC-MS spectra of TCNA after exposure to putrescine (Fig-S18)	S15
26.	Absorbance and emission spectra of TCNA after adding different amines (Fig	g-S19)
	S15	
27.	Normalized FL spectra of TCNA thin film before and after exposure to differ	ent amine
	vapor (Fig-S20) S16	
28.	Absorbance and emission spectra of TCNA after adding putrescine in present	ce of
	methanol (Fig-S21) S16	
29.	Crystal packing and intermolecular distances (Fig-S22)	S17
30.	Molecular packing and void space (Fig S23)	S17
31.	Crystallographic parameters for TAA and TCNA (Table-S7)	S17-S18
32.	The list of various intermolecular interactions (Å) for TCNA (Table S8)	S18
33.	Reversibility plot and emission spectra (Fig-S24)	S19
34.	Optical properties of TCNA and its salt using CAM-B3LYP (Table S9)	S19
35.	DFT-optimized structures (Fig S25)	S19
36.	The HOMO-LUMO of TCNA, TCNA-PUT and TCNA-DAP (Fig S26)	S20
37.	¹ H, ¹³ C and HR-MS data (Fig S27-S35)	S20-S35

Figure S1. UV-Vis spectra of (a) TAA, (b) TCN, and (c) TCNA in a different polar solvent. $\lambda_{abs} = 402 \text{ nm.}$

Figure S2. Emission spectra of (a) TAA and (b) TCN in different polar solvent. $\lambda_{ex} = 402$ nm.

Figure S3. (a) Excitation, absorption, and emission profiles of **TCNA** in 1,4-dioxane (10 μ M). (b) Emission spectra of TCNA in diverse polar solvents. ($\lambda_{ex} \sim 402$ nm). The color variations in solvents are shown in the inset (taken under 365 nm UV- lamp).

Figure S4. Absorbance and Emission spectra of **TAA** at different f_w in acetonitrile. $\lambda_{ex} = 402$ nm.

Figure S5. Absorbance and Emission spectra of **TCN** at different f_w in acetonitrile. $\lambda_{ex} = 410$ nm.

Figure S6. Absorbance and Emission spectra of **TCNA** at different f_w in acetonitrile. $\lambda_{ex} = 404$ nm.

Figure S7. The I/I₀ plot (I₀: FL intensity before addition of water and I: FL intensity after addition of water) [concentration of the probe: 10 μ M] of (a) **TAA**, (b) **TCN** and (c) **TCNA**. The image is taken at $f_w = 0\%$ and $f_w = 90\%$ for **TAA** and **TCN** under 365 nm UV lamp.

Figure S8. Images of (a) TAA and (b) TCN with different amines in 10μ M 1,4-dioxane solution. All the images were taken under a 365 nm UV lamp.

Structure of biogenic amines (BAs) used in this study.

Figure S9. Absorbance and Emission spectra of aggregated TAA [10 μ M in MeCN + f_w (v/v) = 90%] with different amine solutions (10 μ M in DMAc). λ_{ex} = 413 nm.

Figure S10. Absorbance and Emission spectra of aggregated TCN [10 μ M in MeCN + $f_w(v/v)$ = 90%] with different amine solutions (10 μ M in DMAc). λ_{ex} = 413 nm.

Volume of amine added in μL	λ _{max.} (nm) for Putrescine	λ _{max.} (nm) for Cadaverine	λ _{max.} (nm) for Spermidine
TCNA	564	564	564
1	561	563	556
2	559	562	556
4	557 (7 nm blue Shift)	561 (3 nm blue Shift)	553
6	554	561	554
8	550	560	552
10	546 (18 nm blue Shift)	558 (6 nm blue Shift)	552
15	544 (20 nm blueshift)	557 (7 nm blue Shift)	548
20	542 (22 nm blueShift)	553 (11 nm blue Shift)	548
25	541 (23 nm blueShift)	550 (14 nm blueShift)	547
30	539 (25 nm blueShift)	549	546
35	536 (28 nm blue Shift)	545	545
40	535 (29 nm blue Shift)	542	545
45	533 (31 nm blue Shift)	542	542
50	532 (32 nm blue Shift)	542	541 (23 nm blue Shift)
0.20 0.20 0.10 0.16 0.00 0.04 0.04 0.00		A 0.30 0.25 0.25 0.20 0.15 0.10 0.05 0.00	
350 400	450 500 Wavelength (nm)	400 450 Wavele	500 550 ength (nm)

Table S1: Variation in emission maxima after the gradual addition of different volumes of amine in the solution state

Figure S11. Absorbance spectra of **TCNA** upon gradual addition of different volumes of (a) Putrescine, (b) Cadaverine, and (c) Spermidine.

Figure S12. Lifetime decay plot of TCNA [10 μ M in 1,4-dioxane] and after addition of Putrescine solution (10⁻⁶ M).

Table S2: Lifetime components; All lifetimes (τ) are in ns, and $\lambda_{ex} = 405$ nm

Samples	α1	α2	α3	τ_1	τ2	τ3	<τ>	χ ²
TCNA	0.36	0.60	0.03	0.17	0.67	2.37	0.54	0.99

TCNA +2 μL	0.36	0.60	0.03	0.16	0.67	2.36	0.54	1.0
$\frac{1}{1} \frac{1}{1} \frac{1}$	0.44	0.52	0.03	0.17	0.69	2.34	0.51	0.99
PUT								
TCNA +6 µL	0.44	0.52	0.028	0.17	0.69	2.34	0.50	1.01
PUT								
TCNA +8 µL	0.44	0.52	0.03	0.17	0.67	2.28	0.50	0.99
PUT								
TCNA +10 μL PUT	0.46	0.49	0.03	0.16	0.67	2.31	0.48	1.01
TCNA +15 μL PUT	0.49	0.46	0.04	0.16	0.64	2.18	0.46	1.05
TCNA +20 μL PUT	0.50	0.45	0.04	0.17	0.58	1.99	0.43	1.01

Table S3: Excitation, Emission maxima, and absolute quantum yield of thin films after

 exposure to different amine vapors

Sl. No.	Amine	Volume of amine added in 200mL sealed glass bottle	λ _{ex} (nm)	λ _{emi} (nm)	Δλ (nm)	Φ _f (%)	Concentration of Amine in mg/L
1	-	Only Probe	524	604	0	2	0
2	Ammonia	30µL	524	604	0	2	109.5
3	Butylamine	30µL	437	561	43	6.57	111
4	Ethylenediamine	30µL	437	561	43	4	134.85
5	1,3-DAP	30µL	437	561	43	5	132
6	PUT (Putrescine)	30µL	437	513	91	10.40	131.55
7	CAD (Cadaverine)	30µL	437	555	49	7.40	130.5

8	1,6-DAH	30µL	437	560	44	4.63	126
9	2- Phenylethylamine	30µL	437	562	42	1.95	144.3
10	DIPEA	30µL	437	560	44	6	113.5
11	Spermidine	30µL	437	550	54	14.40	138.75
12	Spermine	30µL	524	604	0	2	140.5

Table S4: Variation in λ_{ex} (nm) and $\Phi_f(\%)$ after the addition of different putrescine volume

Volume of PUT	$\lambda_{ex} (nm)$	$\lambda_{em} (nm)$	$\Phi_{\rm f}(\%)$	Conc. of PUT added
(in µL)				(mg/L or ppm)
TCNA	524	604	2	0
1	437	576	2.50	4.43
5	437	560	2.93	21.93
8	437	556	3.73	35.08
10	437	552	3.47	43.85
15	437	531	3.47	65.78
20	437	513	10.21	87.7
25	437	514	10.20	109.63
30	437	513	10.40	131.55

Figure S13A. Normalized FL spectra of the probe before and after exposing to Putrescine in

a 6L jar.

Figure S13B. Difference in emission for **SPM** and **CAD** (See Fig S14 and Table S5 - S6) for the emission spectra and other related parameters)

Figure S14. Normalized FL spectra of the probe before and after exposing to (a) Spermidine, (c) Cadaverine vapor; Change of emission wavelength and QY with different concentrations of (b) Spermidine and (d) Cadaverine vapor.

Table S5:	Variation	$i in \lambda_{ex}$	(nm)) and $\Phi_{ m f}$	(%)) after t	he addi	tion of	different	Spermidine	volume
-----------	-----------	---------------------	------	---------------------	-----	-----------	---------	---------	-----------	------------	--------

Volume of SPM (in µL)	$\lambda_{ex} (nm)$	$\lambda_{em} (nm)$	Φ_{f} (%)	Conc. of SPM added (mg/L or ppm)
TCNA	524	604	0.75	0
5	437	584	3.94	23.13
8	437	555	3.90	37
10	437	555	6.85	46.25
15	437	552	8.74	69.37
20	437	550	10.71	92.5
25	437	550	14.24	115.62
30	437	550	14.40	138.75

Volume of CAD (in µL)	λ_{ex} (nm)	$\lambda_{em} (nm)$	$\Phi_{\rm f}$ (%)	Conc. of CAD added (mg/L or ppm)
TCNA	524	604	0.65	0
5	437	556	7.59	21.75
8	437	556	7.69	34.8
10	437	556	7.43	43.5
15	437	556	7.47	65.25
20	437	556	7.21	87
25	437	555	7.2	108.75
30	437	555	7.40	130.5

Table S6: Variation in λ_{ex} (nm) and $\Phi_f(\%)$ after the addition of different Cadaverine volume

Figure S15. (a) FT-IR spectra of all the forms of **TCNA** as KBr pellet at different stages after exposure to PUT vapor (b) SEM images of mainly three distinctly visualized states.

Figure S16. A complete ¹H NMR spectra of TCNA and TCNA +PUT (1 equiv) in DMSO- d_6 .

Figure S16A. (a) The partial NMR spectra (titration with PUT) (only aromatic part) (b) Expanded ¹H-NMR spectra (shown in Figure S16) of TCNA in DMSO-d₆ before and after the addition of 1eq. of PUT.

Figure S17. Solid state absorbance spectra of TCNA, TCNA Y and TCNA G.

Figure S18. LC-MS spectra of TCNA after exposure to putrescine

Figure S19: The (a) absorption and (b) emission spectra of the probe TCNA (10 μ M in 1,4dioxane) after addition of different amine (10 μ M in dimethylacetamide DMAc). λ_{ex} = 404 nm

4-aminobutanol N1,N1-dimethylpentane-1,5-diamine

Figure S20: (a) Normalized FL spectra of **TCNA** thin film before and after exposure to different amine vapor (λ_{ex} : 524 nm for probe; 437 nm after exposure to amine vapor). (b) All the photophysical parameters (c) Images of the emissive films under 365 nm UV lamp.

Figure S21 The (a) absorption spectra and (b) emission spectra of the probe TCNA (10 μ M) after addition of putrescine. λ_{ex} = 404 nm. (c) The emission parameters along with the images under 365 nm UV-lamp.

Figure S22. (a) **TCNA** crystal packing with supramolecular interactions of TCNA with few significant noncovalent interaction distances (Å), and angles (°) (CN...H interactions are shown in the square) (b) Crystal structure with centroid distances (Å) for **TCNA** obtained using Mercury software

Figure S23. (a) Molecular packing (a-axis view) of **TCNA** with few significant non-covalent interaction distances (Å), (b) Void space for TCNA calculated using Mercury software.

Compounds	TCNA
Emp. Formula	$C_{30}H_{19}NO_2S$
Formula Weight	457.52
Crystal System	Triclinic
Space Group	P-1
a /Å	9.3617(2)
b /Å	11.53320(10)
c /Å	24.0179(2)
α/degree	83.4880
β/degree	80.9190

Table S7:	Crystallographic	parameters for	TAA and TCNA
-----------	------------------	----------------	--------------

γ/degree	82.6190
$V/Å^3$	2527.99(6)
Ζ	2
$\rho_{calc.}$ /g cm-3	1.202
μ / mm^{-1}	1.339
F (000)	952
Data/ restraints/	10679/0/627
narameters	
parameters	
S	1.064
S R1 [I>2σ(I)]	1.064 0.0447
S R1 [I>2σ(I)] wR2 [all data]	1.064 0.0447 0.1232
S R1 [I>2σ(I)] wR2 [all data] Max/min.	1.064 0.0447 0.1232 0.35/-0.37
S R1 [I>2σ(I)] wR2 [all data] Max/min. residual electron	1.064 0.0447 0.1232 0.35/-0.37

 Table S8: The list of various intermolecular interactions (Å) for TCNA

3.372
1
1
1
1

Figure S24. (a) Reversibility plot and (b) solid-state emission spectra of **TCNA** after exposure to putrescine vapor and subsequent HCl vapour

Molecules	TCNA	TCNA+PUT	TCNA+DAP	
Absorption 425.20 nm		399.32 nm	400.48 nm	
	(<i>f</i> =0.9240)	(<i>f</i> =0.7846)	(<i>f</i> =0.8078)	
Emission	564.20 nm	552.17 nm	554.37 nm	
	(<i>f</i> =1.0961)	(<i>f</i> =0.9432)	(<i>f</i> =0.9793)	
HOMO LUMO	HOMO=-6.76	HOMO=-6.41	HOMO=-6.44	
Energies (in eV)	LUMO=-2.09	LUMO=-1.19	LUMO=-1.25	

Table S9.	Optical	properties (of TCNA	and its salt	t molecule	using	CAM-B3LYP
-----------	---------	--------------	---------	--------------	------------	-------	-----------

Figure S25. DFT-optimized structures with a few selected bond angles and distances.

Figure S26. The HOMO-LUMO of TCNA, TCNA-PUT and TCNA-DAP

Figure S27. ¹H NMR spectrum for TAA in CDCl₃.

Figure S28. ¹³C NMR spectrum for TAA in CDCl₃.

Figure S29. HRMS Spectra of TAA

Figure S30. ¹H NMR spectrum for TCN in CDCl₃.

Figure S31. ¹³C NMR spectrum for TCN in CDCl₃.

Figure S32. HRMS Spectra of TCN

Figure S33. ¹H NMR spectrum for TCNA in DMSO-d₆.

Figure S34. ¹³C NMR spectrum for TCNA in DMSO-d₆.

-----*END*-----