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Figure S1 Representative images of a carbon sponge coated with p(g3T2) in KCl 0.01 M during pristine, 
expansion and contraction (from left to right, respectively).

Table ST1: Typical therapies that require spatio-temporal release of drugs. The table summarizes the 
drug currently employed for each case, together with the charge, the molecular weight, the typical dose 
administered with current methods, the maximum concentration (Cmax) reaching the site of interest and 
the database where the data were taken. 

Therapeutic 

Category
Charge Drug

Molecular 

weight 

(g/mol)

Typical 

Dose
Cmax

Method of 

Administration
Reference

Hormone 

Therapy

+1 Leupro

lide

1209.5 Varies 4.6 - 212 

ng/mL

Subcutaneous or 

intramuscular 

injection

https://go.drug

bank.com/drug

s/DB00007

+1 Octreot

ide

1019.24 Varies 2.5-5.3 

ng/mL

Subcutaneous or 

intramuscular 

injection

https://go.drug

bank.com/drug

s/DB00104

+1 Desmo

pressin

1069.22 Varies 4-8.1 

pg/mL

Oral (tablets or 

nasal solution)

https://go.drug

bank.com/drug

s/DB00035

Thyroid 

diseases

-0.3 Thyroxi

ne

776.87 0.05 – 500 

mcg per day

Not 

available 

Oral tablets https://go.drug

bank.com/drug

s/DB00451

Coagulation Anionic Hepari

n

3-30k 10-100 

USPU/mL

Not 

Available

Intravenous https://go.drug

bank.com/drug

s/DB01109



Figure S2 Representative microscopy images of p(g3T2)-coated sponge loaded with Insulin-FITC at 
selected time points for the leaking and the active release conditions. A fluorescent corona can be 
appreciated around the sponge perimeter during the whole leaking duration, indicating that the Insulin-
FITC was successfully loaded. During the first minutes of release, the polymer contracts and the labelled 
protein diffuses in the electrolyte. 



Figure S3 Representative dynamics of Insulin – FITC, Methyl Blue (reported from Figure 2), CFP and 
Direct Red 80 during leaking (No Vapp) and release (Vapp = -0.2 V). 



Figure S4 Representative images of the reaction occurring during the ELISA insulin test. The insulin 
released from the polymer binds to the insulin-specific antibody, generating a blue colour due to the 
reaction with the detector antibody. The negative control, KCl with no insulin, does not induce any 
colour change as expected. As a positive control we tested solutions of insulin of known concentration. 
For both concentrations the reaction with the antibodies occurs resulting in the blue color.  
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Figure S5 Diffusion coefficient in water for the different molecules compared to the Cl anions, reported 
from: Cl [1], Fluorescein [2], MB [3], DR80 [4], I-FITC [5]. 

Supporting Note 1: We define the release efficiency as 

eff = mol_released/mol_loaded, 

where

mol_loaded = C_loaded * Vswollen_polymer, 



mol_released = C_released * V_chamber, 

mol_after_loading= C_after_loading * V_chamber_after loading  

V_chamber_after loading =V_chamber – Vswollen_polymer

and

C_loaded = Cloading_sol – Cafter_loading. 

With Cloading_sol (known concentration) before loading the sponge; Cafter_loading  being the concentration of 

the solution in the well after the loading (extracted from the calibration curve). The loaded 

concentration, C_loaded can be calculated as the difference between the two. As it is not possible to 

directly measure or to extract the V_swollen_polymer or the V_chamber_after loading  since the sponge has a complex 

geometry and the expansion is inhomogeneous in such a 3D structure, we estimated the efficiency by 

combining the information of the current and the measured released amount using absorption or 

fluorescence.  

Assuming that for every hole injected or extracted from the polymer, one anion will be expelled or 

injected accordingly, we extracted the moles of released anions as

𝑄 =  
 

∫
 

𝐼𝑑𝑡

mol_current = Q/(nF) (where F is the Faraday constant in C/mol and n is the net charge)

However, the solution contains both Cl anions and the negatively charged dye, so we calculated the 

fraction of dye that contributes to the current by comparing the moles calculated by the current and the 

moles calculated from the absorption of the dye when released.

We define the dye fraction X_dye as

X_dye = mol_rel_abs / mol_current

Then we assumed that the fraction of the current is the same for release and loading and therefore 

calculated the loaded amount from the moles calculated from the loading current (mol_loaded_current) as:

mol_loaded = mol_loaded_current * X_dye

Hence the efficiency as:

Eff = mol_rel_abs / mol_loaded



Figure S6 Release of FITC conjugated Bovine Serum Albumin after leaking (A) and holding (B) 
conditions. The data represent the average + SD. The labels reported on each bar show the 
concentration (mg/ml) recorded at the end of each condition. There is no significant difference between 
the leaking or the holding and the active release. 



Figure S7 Charging and discharging behaviour of the p(g3t2)-coated sponge recorded in KCl 0.01 M. 



Figure S8 Concentration of Direct Red 80 released at each pulse after two consecutive loadings of the 
p(g3t2)-coated sponge. 



Figure S9 Biocompatibility of p(g3T2) with Live/dead staining. a) Live/Dead staining average values 

after cells were incubated on top of p(g3T2) for 24 hours. Data are presented as mean +/- SD. Mann-

Whitney test was used to significance. (n=6 replicates per group) (b,c) Representative images of (b) 

control sample and (c) p(g3T2) treated labware with living cells depicted in green and dead cells in 

red. Biocomptability of p(g3T2) with Alamar Blue test (d). The results are reported as mean +/- SD.
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