Electronic Supplementary Information

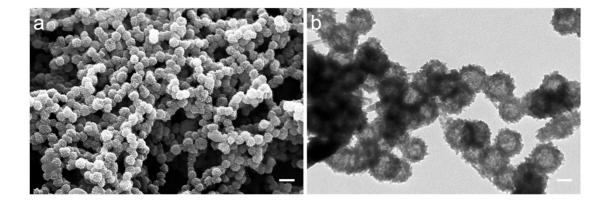
Silver oxide decorated urchin-like microporous organic

polymer composites as versatile antibacterial organic

coating materials

Yu Zhang^{*a,d}, Yunxin Tang^b, Qian Liao^b, Yiduo Qian^a, Linglin Zhu^c, Deng-Guang Yu^b, Yixin Xu^a, Xiuhong Lu^a, Il Kim^{*e} and Wenliang Song^{*b}

^a School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai201318, P. R. China


^b School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

^c Department of Oncology, Huadong Hospital Affiliated to Fudan University, No.139
Yan An Xi Road, Shanghai, 200040, PR China.

^d State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China

 ^e School of Chemical Engineering, Pusan National University, Busan 609-735, Republic of Korea.

Corresponding author: Y.Z.: zhangy_21@sumhs.edu.cn I.K.: ilkim@pusan.ac.kr; W.S.: wenliang@usst.edu.cn

Figure S1. (a) Scanning electron microscopy (SEM) and (b) transmission electron microscopy (TEM) images of UMOPs-COOH. Scale bars: 300 nm in a and 100 nm in b. As compared to UMOPs, the sea urchin-like morphology was well-maintained after carboxylation reaction.

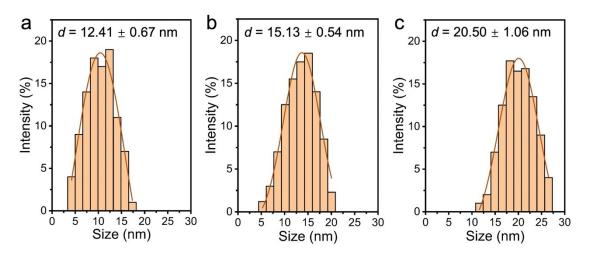
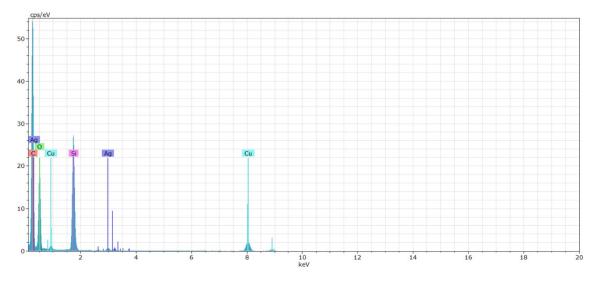



Figure S2. Size distribution diagrams of the Ag_2O nanoparticles (NPs) within $Ag_2O@UMOPs$. (a) $Ag_2O-1@UMOPs$, (b) $Ag_2O-2@UMOPs$, and (c) $Ag_2O-3@UMOPs$.

Figure S3. Energy-dispersive X-ray spectroscopy (EDX) spectra of $Ag_2O@UMOPs$, the peaks related on the C, O, Ag, Si, Cu, where the Cu peaks are from the mesh of the TEM grids and the Si peak is from the background.

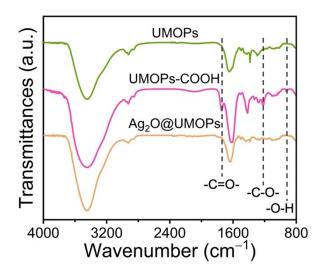
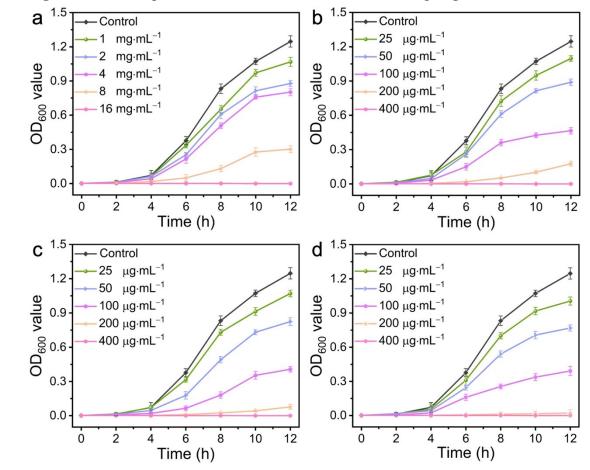
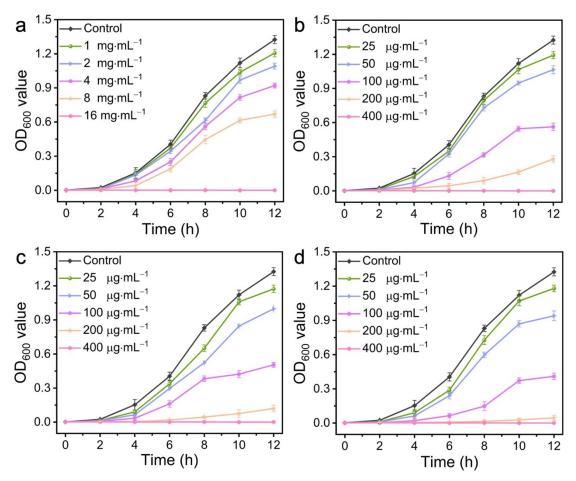




Figure S4. FT-IR spectra of UMOPs, UMOPs-COOH, and Ag₂O@UMOPs.

Figure S5. Growth curves of *E. coli* treated with different concentrations of (a) UMOPs, (b) Ag₂O-1@UMOPs, (c) Ag₂O-2@UMOPs, and (d) Ag₂O-3@UMOPs.

Figure S6. Growth curves of *S. aureus* treated with different concentrations of (a) UMOPs, (b) Ag₂O-1@UMOPs, (c) Ag₂O-2@UMOPs, and (d) Ag₂O-3@UMOPs.

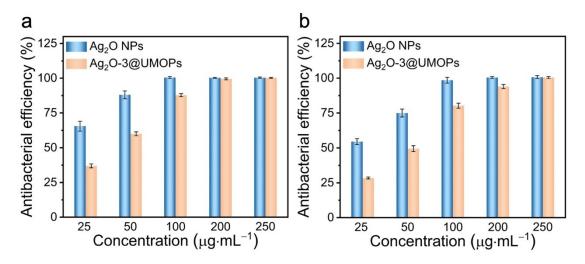
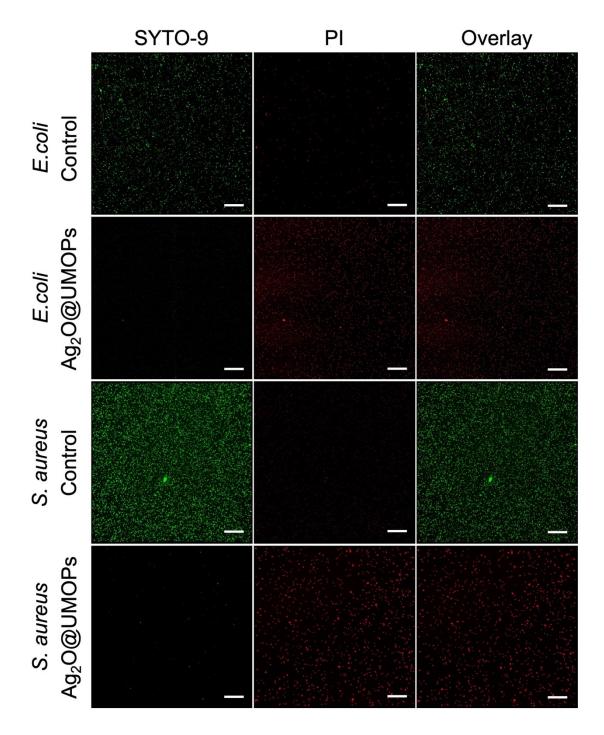



Figure S7. Antimicrobial activity of Ag₂O nanoparticles (Ag₂O NPs) and Ag₂O-3@UMOPs against (a) *E. coli* and (b) *S. aureus*.

Figure S8. Confocal fluorescence microscopic images of control and Ag₂O@UMOPstreated groups of *E. coli* and *S. aureus*. Scale bars: 200 μm.

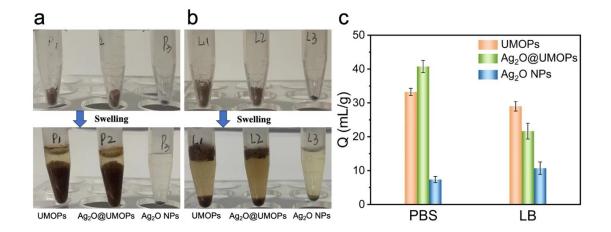


Figure S9. Optical photographs showing before and after the swelling of UMOPs, Ag₂O@UMOPs and Ag₂O NPs against (a) PBS and (b) LB broth. (c) Swelling ability (Q) of UMOPs, Ag₂O@UMOPs and Ag₂O NPs against the specific solvents (The swelling ability was tested by the reported method. The as-prepared UMOPs, Ag₂O@UMOPs and Ag₂O NPs (5.0 mg) were placed in an Eppendorf centrifuge tube (1.5 mL), to which was added 0.5 mL of PBS and LB broth. All samples were allowed to stand in the solvents for 24 h, and then the heights of the swollen samples were measured. The heights of the swollen samples were converted to the volume by calculating an empty tube (1.5 mL) with a known volume of water in advance. The swelling ability (Q) of all samples could be determined by the volume of swollen samples (mL) divided by the mass of the samples (0.005 g). The swelling ability experiment on each sample was carried out three times to achieve the average Q values with the standard deviation). the error as

Materials	Morphology	Size (nm)	Ag content	Thermal stability ^b	Porosity (m ² /g) ^c	Antibacterial efficiency Inhibition zone (mm) ^d	Ref.
Ag2O@UMOPs	Sea urchin-like morphology	~200	3.83 ~ 7.54 wt%	65.03% at 800 °C	551.26	<i>S. aureus</i> : 95.30% <i>E.coli</i> : 99.80% 200 μg·mL ⁻¹	This work
Ag2O@PLLA	Sphere	/	0.50 wt %	/	/	S. aureus: 89.00% E.coli: 96.00%	1
Ag/Ag ₂ O/ZnO@cellulose- hitosan film	/	/	30.60 ~ 51.30 wt%	15.57% at 700 °C	/	<i>S. aureus</i> : 10.00 ~ 19.60 <i>E.coli</i> : 12.40 ~ 15.00 6 mm pieces	2
g ₂ O@LS/CG hydrogel	1	/	15.00 wt%	33.00 % at 700 °C	/	<i>S. aureus</i> : 100.00% <i>MRSA</i> : 81.00% 1 cm × 1 cm × 0.5 cm	3
C ₃ N ₄ /ZnO-Ag ₂ O	Irregular layer	/	3.23 wt%	/	/	S. aureus: 10.00 ± 0.50 E.coli: 7.00 ± 1.00 $100 \ \mu g \cdot m L^{-1}$	4
I-PPAN/rGO-g-PAO)Ag ⁺ /Ag membrane	Nanofiber	/	/	/	40.93	<i>S. aureus</i> : 100.00% <i>E.coli</i> : 100.00% 0.50 g	5

Table S1. Comparison of the	current study with previ	ously reported data fo	r antibacterial performance
1	<i>2</i> 1	2 1	1

AgNPs@P(NIPAM-co-MQ)	Sphere	1~4	/	/	/	<i>S. aureus</i> : 4.05 µg·mL ^{−1} <i>E.coli</i> : 10.08 µg·mL ^{−1} MIC ^e	6
Ag@MSN-QPEI	Sphere	15	3.50 wt %	29.04% at 790 °C	355.62	P.syringae pv. Lachrymans: 95.19% (40 mg \cdot L ⁻¹) C.michiganensis subsp. Michiganensis: 95.10 % (50 mg \cdot L ⁻¹)	7
IM-POP@Ag	Irregular sphere	/	26.01 wt%	66.50% at 800 °C	137.70	<i>S. aureus</i> : 93.66% <i>E.coli</i> : 96.56% 200 μg·mL ⁻¹	8
rGO-QCP@Ag	Sheet	3~4	44.07 wt%	35.05 % at 800 °C	/	<i>S. aureus</i> : 256 µg·mL ^{−1} <i>E.coli</i> : 16 µg·mL ^{−1} MIC	9
polyCu-MOF@AgNPs	Cube	600 × 100	7.24 at‰ ^a	27.87% at 700 °C	45.39	<i>S. aureus</i> : 100.00% 10 μg·mL ⁻¹ <i>S. aureus</i> : 10 μg·mL ⁻¹ MIC	10

inhibition zone reported in the article; ^e Minimal inhibition concentrations.

Element (at%)	С	0	Ag
UMOPs	91.87	8.13	0.00
Ag ₂ O-1@UMOPs	88.41	11.02	0.57
Ag ₂ O-2@UMOPs	87.84	11.21	0.95
Ag ₂ O-3@UMOPs	87.15	11.73	1.12

Table S2. Summary of the elemental content for UMOPs and Ag₂O@UMOPs

The data is from the XPS analysis.

Reference

[1] E. Lizundia, I. Armentano, F. Luzi, F. Bertoglio, E. Restivo, L. Visai, L. Torre, D. Puglia, Synergic effect of nanolignin and metal oxide nanoparticles into poly (L-lactide) bionanocomposites: material properties, antioxidant activity, and antibacterial performance, *ACS Appl. Bio Mater.*, 2020, **3**, 5263-5274.

[2] Y. Peng, H. Zhou, Y. Wu, Z. Ma, R. Zhang, H. Tu, L. Jiang, A new strategy to construct cellulose-chitosan films supporting Ag/Ag₂O/ZnO heterostructures for high photocatalytic and antibacterial performance, *J. Colloid Interface Sci.*, 2022, **609**, 188-199.

[3] X. Xie, M. Zhang, Y. Li, Y. Lei, J. Sun, N. Sattorov, K. B. Makhmudov, J. Wang, NIR as a "trigger switch" for situ distinguish superbacteria and photothermal synergistic antibacterial treatment with Ag₂O particles/lignosulfonate/cationic guar gum hybrid hydrogel, *Int. J. Biol. Macromol.*, 2023, **232**, 123340.

[4] S. Vignesh, P. Eniya, M. Srinivasan, J. K. Sundar, H. Li, S. Jayavel, M. Pandiaraman, M. A. Manthrammel, M. Shkir, B. Palanivel, Fabrication of Ag/Ag₂O

incorporated graphitic carbon nitride based ZnO nanocomposite for enhanced Zscheme photocatalytic performance of various organic pollutants and bacterial disinfection, *J. Environ. Chem. Eng.*, 2021, **9**, 105996.

[5] N. Han, W. Wang, X. Lv, W. Zhang, C. Yang, M. Wang, X. Kou, L. Wei, Y. Dai, X. Zhang, Highly efficient purification of multicomponent wastewater by electrospinning kidney-bean-skin-like porous H-PPAN/rGO-g-PAO@ Ag⁺/Ag composite nanofibrous membranes, *ACS Appl. Mater. Interfaces*, 2019, **11**, 46920-46929.

[6] H. Ji, S. Zhou, Y. Fu, Y. Wang, J. Mi, T. Lu, X. Wang, C. Lü, Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity, *Mater. Sci. Eng. C*, 2020, **110**, 110735.

[7] J. Niu, G. Tang, J. Tang, J. Yang, Z. Zhou, Y. Gao, X. Chen, Y. Tian, Y. Li, J. Li,
Y. Cao, Functionalized silver nanocapsules with improved antibacterial activity using silica shells modified with quaternary ammonium polyethyleneimine as a bacterial cell-targeting agent, *J. Agric. Food Chem.*, 2021, 69, 6485-6494.

[8] H. Luo, T. Huang, X. Li, J. Wang, T. Lv, W. Tan, F. Gao, J. Zhang, B. Zhou, Synergistic antibacterial and wound-healing applications of an imidazole-based porous organic polymer encapsulated silver nanoparticles composite, *Microporous Mesoporous Mater.*, 2022, **337**, 111925.

[9] S. Zhou, H. Ji, Y. Fu, Y. Yang, C. Lü, Mussel-inspired fabrication of cationic polymer modified rGO supported silver nanoparticles hybrid with robust antibacterial

and catalytic reduction performance, Appl. Surf. Sci., 2020, 506, 144655.

[10] C. Guo, F. Cheng, G. Liang, S. Zhang, Q. Jia, L. He, S. Duan, Y. Fu, Z. Zhang, M.

Du, Copper-based polymer-metal-organic framework embedded with Ag nanoparticles: Long-acting and intelligent antibacterial activity and accelerated wound healing, *Chem. Eng. J.*, 2022, **435**, 134915.