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1. Experimental section
Materials

Phenothiazine, 4-(2-chloroethyl)-morpholine hydrochloride, glycine tert-butyl ester
hydrochloride, tert-butanol, 1-ethoxyethylideneammonium chloride, phydroxybenzaldehyde,
ether, KOH, NaOH, POCIl; and K,COj;. All biomaterials were purchased from Keygen Biotech
Co.Ltd. A-549 cells were used in this work from the American Type Culture Collection. Unless
stated otherwise, all chemicals with analytical grade were purchased from commercial sources
and used directly as received. All the solvents used to investigate the photophysical behaviors
of the fluorophores were spectroscopic grade. Column chromatography was performed on silica

gel (200-300 mesh).
Measurements and characterization

NMR ('H and '*C) measurements were recorded on a Bruker ADVANCE III HD 600 NMR
spectrometer. UV-vis spectra are recorded on the Shimazdu 2450 UV-visible
spectrophotometer. High-resolution mass spectra (HRMS) were acquired on an Ultra flextreme
MALDI-TOF/TOF and Agilent Technologies 6530 Accurate-Mass equipment. Steady-state
fluorescence excitation and emission spectra were obtained by a time-correlated single photon
counting fluorimeter (Fluoromax-4/plus) with a xenon lamp as the light source. The EPR
(Electron Paramagnetic Resonance) spectra were recorded on a Bruker Magnettech ESR5000.
The power of the customized 460 nm blue LED lamp was 23 mW-cm. The of singlet oxygen
yield (®,) and its applications in cells were both performed under the condition of irradiation
at 23 mW-cm (the irradiation was tested with an Aicevoos-V 10 irradiation meter). One-photon
fluorescent images of cells were acquired from FLUOVIEW FV3000/FLUOVIEW
FV1000MPE OLYMPUS (CLSM) and two-photon fluorescent images of cells were acquired
from Olympus multiphoton microscope (FVMPE-RS) equipped with an InSight DS-OL pulsed
IR laser system (Spectra-Physics, 80 MHz, 120 fs). The Z-scan two-photon absorption cross

section is measured from NLO-Z. The microscope used for 2PE-PDT was an upright
Singlet oxygen quantum yield (®,) detection

The @, of the photosensitizers FPOH, FP,R’ and FP,R" were detected by using 9,10-
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Anthracenediyl-bis(methylene)dimalonic acid (ABDA) as the capture agent for 'O, and the
Ru(bpy);Cl, as the reference (©,=0.41 in aqueous solution).! Keeping the absorbance of the
photosensitizers and ABDA were about 0.2 and 1 respectively. The mixed solution was
irradiated under 460 nm light, and recorded the absorbance value of the ABDA solution to get

the decrease slop. Finally, the @, was calculated on the basis of the formula below:?

Kipss) 8 Fruor ety

Paps) =P
AR k) Fiess

Where, the k is the decrease slope between the absorbance and its corresponding time. F is
absorption correction factor (F=1-10°P), and OD is its maximum absorbance. PSs are FPOH,

FP,R’ and FP,R".
Theoretical calculations

Molecular structural parameters of the compounds were studied theoretically by quantum
chemical computational technique based on the DFT method. The quantum-chemical methods
at the B3LYP/6-31G (d) level of theory using Gaussian 16 were employed to calculate the
HOMO and LUMO energies of the synthesized compounds.

Two-photon absorption cross section measurement

The two-photon absorption cross sections of compounds FPOH, FP,R’ and FP,R” are

measured using Z-scan method, and the calculation formula is as follows: 34
1000 x hvp
2PA = N,c

The d,p4 values are obtained by knowing the coefficient S, where N, is the Avogadro’s
number, ¢ is the sample concentration and / vis related to the exciting photon energy. (c: 1x10-3

M, H,0, A,: 800 nm)
MTT cytotoxicity assay

A-549 cells (5000 cells/well) were seeded into the 96-well plate and incubated for 24 h at 37
°C. Then prepared different concentrations (1 pM, 2 uM, 3 uM, 4 uM, 5 uM, 6 uM and 7 uM)
photosensitizers FPOH, FP,R’ and FP,R"” were added to the 96-well plate incubated for 24 h in

hypoxic microenvironment (2% O,) and normoxia microenvironment (21% O,), respectively.
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Dark toxicity: Dripping 100 puL/well MTT (5 mg/mL) into the 96-well plate and incubated
for 4 h in the dark in hypoxic microenvironment (2% O,) and normoxia microenvironment
(21% 0O,), respectively. Then adding 100 pL/well DMSO solution into well and incubated for
2 h. Finally, the cell viability in hypoxic microenvironment (2% O;) and normoxia
microenvironment (21% O,), respectively, were calculated by the absorbance tested by a
microplate reader.

Phototoxicity test: Irradiating the 96-well plate in hypoxic microenvironment (2% O,) and
normoxia microenvironment (21% O,), respectively, under 460 nm light for 15minutes and
incubated for 12 h. Adding 100 uL/well MTT solution (5 mg/mL) into 96-well plate and
incubated for 4 h. Then 100 pL/well of DMSO solution were added to 96-well plate and
incubated for 2 h. Finally, the cell viability Dark toxicity: Dripping 100 puL/well MTT (5
mg/mL) into the 96-well plate and incubated for 4 h in the dark in hypoxic microenvironment
(2% 0O,) and normoxia microenvironment (21% O,), respectively. Then adding 100 pL/well
DMSO solution into well and incubated for 2 h. Finally, the cell viability in hypoxic
microenvironment (2% O,) and normoxia microenvironment (21% O,), respectively, were

calculated by the absorbance tested by a microplate reader

AO/EB staining

The prepared confocal culture dish containing 2 uM photosensitizer FP,R" was irradiated for
5 minutes and 15 minutes under 460 nm light in hypoxic microenvironment (2% O,) and
normoxia microenvironment (21% O,), respectively. And then placed in the incubator for 2 h.
The diluted acridine orange (AQO)/ ethidium bromide (EB) stain was added and continued to
incubate for 30 minutes. The culture dish was taken out, washed three times with PBS buffer
solution. In the end, placed under the confocal laser microscope for imaging. All of the above

procedures were done in the dark.

General synthesis procedures for the compounds

Synthesis of Ptz-Lyso. Phenothiazine (2.0 g, 0.01 mol), 4-(2-chloroethyl)-morpholine
hydrochloride (2.79 g, 0.015 mol) and KOH (2.24 g, 0.04 mol) were added to DMSO (30 mL).

Then, the reaction system was heated up to 70 °C and stirred for 10 h. After being cooled down
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to room temperature, the reaction mixture was extracted with ethyl acetate and washed with
saturated NaCl water solution. The organic layer was dried over anhydrous Na,SO,,
concentrated under reduced pressure. The crude product was purified by column
chromatography on silica gel using acetate /petroleum ether (v/v = 1/1) as the eluent, in turn, to
afford Ptz-Lyso as a red solid (yield 85%). 'H NMR (600 MHz, CDCl;, ppm): 6 7.18-7.12 (m,
4H), 6.93 (dd, J=17.5, 5.4 Hz, 4H), 4.06 (s, 2H), 3.74 (d, J = 3.8 Hz, 4H), 2.80 (s, 2H), 2.57 (s,
4H). 3C NMR (151 MHz, CDCl;, ppm): 0 145.01, 127.55, 127.33, 125.03, 122.67, 115.42,
66.87, 55.92, 53.92, 45.59. HRMS (m/z): [M+H]* calc. for C;sH,,N,OS: 313.1330, found
313.1330.

Synthesis of PCHO-lyso. Put DMF (1.8 mL, 22.8 mmol) into a 250 mL round bottom flask,
add POClI; (2.52 mL, 27 mmol) dropwise into DMF solution slowly. After dripping, the reaction
mixture was stirred at 0 °C for 1 hour. Add phenothiazine (2.7g, 19 mmol) to the reaction
mixture and raise the temperature to 90 °C. Monitor the progress of the reaction by TLC. After
4 hours, pour the reaction mixture over ice water and neutralize with NaOH. Extract the
resultant mixture with dichloromethane and wash with brine solution. Evaporate the combined
organic phase under reduced pressure. The crude product was purified by column
chromatography on silica gel using acetate /petroleum ether (v/v = 1/2) as the eluent, in turn, to
afford PCHO-lyso as a yellow solid (yield 55%). '"H NMR (600 MHz, CDCl;, ppm): J 9.80 (s,
1H), 7.65 (dd, J= 8.4, 1.9 Hz, 1H), 7.60 (d, J = 1.8 Hz, 1H), 7.21-7.15 (m, 1H), 7.12 (dd, J =
7.6, 1.4 Hz, 1H), 7.05-6.92 (m, 3H), 4.13-4.01 (m, 2H), 3.77-3.69 (m, 4H), 2.79 (t, /= 6.3 Hz,
2H), 2.56 (s, 4H). 3C NMR (151 MHz, CDCl;, ppm): 6 190.01, 150.43, 143.24, 131.30, 130.16,
128.42, 127.70, 127.66, 125.13, 123.83, 115.93, 114.92, 100.00, 66.90, 55.81, 53.93, 46.40,
0.01. HRMS (m/z): [M+H]* calc. for C19H»)N,O,S: 341.1249, found 341.1279.

Synthesis of PFP-lyso. Tert-butyl glycinate hydrochloride (0.9 g, 5.4 mmol) and sodium
hydroxide (0.2 g, 5.4 mmol) were stirred in tert-butanol at room temperature for 1 h, then
PCHO-lyso (0.6 g, 1.8 mmol) was added and stirring continued for 12 h at room temperature,
1.0 equivalent of tert-butyl (1-ethoxyethyl)glycinate was added, stirred at 50 °C for 12 h,
extracted and dried, the crude product was purified by column chromatography on silica gel
using acetate /petroleum ether (v/v = 1/1) as the eluent, in turn, to afford PFP-lyso as orange

solid (yield 75%). "H NMR (600 MHz, CDCls, ppm): 6 7.98 (d, J = 1.4 Hz, 1H), 7.90 (dd, J =
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8.5, 1.6 Hz, 1H), 7.15 (t, J = 7.7 Hz, 2H), 6.99 (s, 1H), 6.96-6.90 (m, 3H), 4.27 (s, 2H), 4.06 (s,
2H), 3.74 (s, 4H), 2.79 (s, 2H), 2.56 (s, 4H), 2.32 (s, 3H), 1.47 (s, 9H). 3C NMR (151 MHz,
CDCls, ppm): 6 170.01, 166.66, 160.54, 146.47, 143.86, 136.82, 132.18, 130.81, 128.89,
127.54, 127.45, 126.77, 124.62, 124.12, 123.22, 115.53, 115.14, 83.10, 66.87, 60.40, 55.78,
53.91, 46.01, 42.16, 27.99, 21.07, 15.51, 14.22. HRMS (m/z): [M+H]" calc. for CoH3;N,0,S:

535.23654, found 535.23343.

2. Photophysical properties of the photosensitizers
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Figure S1. Reaction mechanisms of DPBF, DHR123, DCFH-DA, SOSG and DHE for the

detection of general '0,, O, and ROS.
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Figure S2. The '0, detection of photosensitizer FPOH (a) and FP,R’ (b) in aqueous solution.
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Figure S3. Fluorescence emission spectra of DHR123 for O, detection of photosensitizers
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Figure S4. The absorbance of different concentrations of FPOH(a), FP,R'(b) and FP,R"(c) in

water.
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Table S1. Excited states, symmetry, transitions, wavelengths and oscillator strength of FP,R’.

Excited State Symmetry Transitions Energy (eV) Wavelength Osc. Strength (f)
S, Singlet-A HOMO—LUMO 2.4090 514.68 nm 0.7879
Ts Triplet-A  HOMO-5—LUMO-1 2.3054 537.80 nm 0.0000
T, Triplet-A HOMO-1—-LUMO 1.3845 895.55 nm 0.0000

Table S2. Calculated S,/Tn energies of chromophore FP,R’ at the TD-CAM-B3LYP/6-

31G(d,p).
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Figure SS. Frontier molecular orbitals and energies (eV) from DFT -calculations of

photosensitizers FP,R'. (TD-CAM-B3LYP/6-31G(d,p))

Table S3. Excited states, symmetry, transitions, wavelengths and oscillator strength of FP,R".

Excited State Symmetry Transitions Energy (eV) Wavelength Osc. Strength (f)
S Singlet-A HOMO—LUMO 2.4248 511.33 nm 0.8895
T; Triplet-A  HOMO-3—LUMO-1 23142 535.75 nm 0.0000
T, Triplet-A HOMO—LUMO 1.3832 896.39 nm 0.0000




Table S4. Calculated S1/Tn energies of chromophore FP,R" at the TD-CAM-B3LYP/6-

31G(d,p).
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Figure S6. Frontier molecular orbitals and energies (eV) from DFT calculations of FP,R".
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Figure S8. Normalized transmittance curves of photosensitizers | mM FPOH (a) and FP,R’
(b) in H,O excited at fs-800 nm.

3. The dark/light cytotoxicity test in A-549 cells of photosensitizers
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Figure S9. Cell growth curve of A549 cells treated with FP,R" under light irradiation for 10

min (460 nm, 23 mW-cm).
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4. NMR spectra of the compounds
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Figure S10. "H NMR spectrum of compound Ptz-lyso.
Ll Wi o L) i
=1 wiem SN - - = [ w3 o e o
i ool w) il Bt ] @ & n
- ks Eal — ~ e = wi o v
— ot - ~ ~ h-3 W -
ot | ~ I ]
0
N
a0
S
MJ I
65 60 55 50 45

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70
ppm

Figure S11. 3C NMR spectrum of compound Ptz-lyso.
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5. HRMS spectra of the compounds
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Figure S22. HRMS spectrum of compound Ptz-lyso.
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Figure S23. HRMS spectrum of compound PCHO-lyso.
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Figure S24. HRMS spectrum of compound PFP-lyso.
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Figure S25. HRMS spectrum of compound FPOH.
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Figure S26. HRMS spectrum of compound FP,R’.
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Figure S27. HRMS spectrum of compound FP,R".
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