A ratiometric fluorescent probe for imaging the fluctuation

of HOBr during endoplasmic reticulum stress

Bingpeng Guo,^a Mengyu Li,^a Guiwen Hao,^a Liangchen Wei,^c Honghan Sa,^a Jianbin

Chen,*a Wei Shu*c and Changxiang Shao*b

^a School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.

^b School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.

^c School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.

E-mail: jchen@qlu.edu.cn; jdshuwei@163.com; cxshao@sdfmu.edu.cn.

Contents

- 1. Comparison of fluorescent probes for HOBr detection
- 2. The mass spectrum of the reaction mixture of ER-NABr with HOBr
- **3.** The response time of ER-NABr for HOBr
- 4. The pH effect of ER-NABr for HOBr
- 5. The absorption titration spectra of ER-NABr with HOBr
- 6. The reaction mechanism of the ER-NABr with ONOO-
- 7. The cytotoxicity of ER-NABr
- 8. The synthesis route for the ER-NABr
- 9. Spectral data of ER-NABr

1 · Comparison of fluorescent probes for HOBr detection

Probe	Detection Limit	Response mode	λ _{em} (nm)	Organelle- targeting	Reference
	/	Turn-off	755	/	Chem. Commun, 2012, 48, 7735
$ \begin{array}{c} & & \\ & & $	0.97 μΜ	Turn-on	635	/	Chem. Commun, 2013, 49, 5790
	17 pM	Turn-on	525	/	Angew. Chem. Int. Ed, 2016, 55, 12751
	1.8 nM	Ratio	528/437	mitochondria	Chem. Commun, 2018,54, 12198
	33.5 nM	Turn-off	540	lysosome	Spectrochim. Acta Part A Mol. Biomol. Spectrosc,2019, 212, 48
NC CN S NC N NH ₂	660 nM	Turn-off	655	/	Spectrochim. Acta Part A Mol. Biomol. Spectrosc, 2019, 222, 117240
HO HO NH2	30.6 nM	Turn-on	460	/	Sensors and Actuators B, 2020, 315, 128125
	296 nM	Turn-on	560	lysosome	Chem. Commun, 2021, 57, 12679

Table S1. Comparison of fluorescent probes for HOBr detection.

	200 nM	Turn-on	505	/	Sensors and Actuators B, 2020, 305, 127460
	256 nM	Turn-off	600	/	Chem. Commun, 2023, 59, 1018
	99 nM	Ratio	610/555	lysosome	Sensors and Actuators B, 2019, 297, 126826
	20 pM	Turn-on	663	mitochondria	Anal. Chem, 2017, 89, 1787
	15 nM	Turn-on	505	lysosome	Anal. Chem, 2022, 94, 11783
	1.37 nM	Turn-off	590	/	Dyes Pigments, 2023, 217, 111381
S NH	119 nM	Turn-on	470	/	Talanta, 2024, 266, 124969
$\overset{s}{\underset{_{H_2N}}{\overset{\circ}{}}} \overset{o}{\underset{_{N_2N}}{\overset{_{N_2N}}{\overset{\circ}{}}}} \overset{o}{\underset{_{N_2N}}{\overset{_{N_2N}}{\overset{\circ}{}}}}$	138 nM	Ratio	610/560	endoplasmic reticulum	This work

2. The mass spectrum of the reaction mixture of ER-NABr with HOBr

Fig. S1. The mass spectrum of the reaction mixture of ER-NABr with HOBr.

3. The response time of ER-NABr for HOBr

Fig. S2. The ratio I_{610}/I_{560} of ER-NABr (10 $\mu M)$ after the addition of HOBr (50 $\mu M).$

4. The pH effect of ER-NABr for HOBr

Fig. S3. pH effect on the ratio I_{610}/I_{560} of ER-NABr (10 μ M) in the absence and presence of HOBr (50 μ M).

5. The absorption titration spectra of ER-NABr with HOBr

Fig. S4. (a) The ratio of A_{470}/A_{425} of ER-NABr (10 μ M) upon different amounts of HOBr (0-60 μ M). (d) The plot of absorbance intensity ratio (A_{470}/A_{425}) of ER-NABr (10 μ M) vs different amounts of HOBr (5-40 μ M).

6. The reaction mechanism of the ER-NABr with ONOO.

Scheme S1. The reaction mechanism of the ER-NABr with ONOO-.

7. The cytotoxicity of ER-NABr

Fig. S5. Cytotoxicity assays of **ER-NABr** at different concentrations for HeLa cells. The data shown with the average value (n = 5).

8. The synthesis route of the ER-NABr

Scheme S2. Synthesis route of the ER-NABr.

9. Spectral data of ER-NABr

Fig. S7. H-NMR of ER-NABr.

