Injectable and self-healable nano-architectured hydrogel for NIR-light responsive chemo- and photothermal bacterial eradication

Daniel Rybak^a, Chiara Rinoldi^a, Paweł Nakielski^a, Jingtao Du^b, Mohammad Ali Haghighat Bayan^a, Seyed Shahrooz Zargarian^a, Michał Pruchniewski^c, Xiaoran Li^b, Barbara Strojny-Cieślak^c, Bin Ding^b, and Filippo Pierini^{a*}

- ^{a.} Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research,
 Polish Academy of Sciences, Warsaw 02-106, Poland
- ^{b.} Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- ^{c.} Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-787, Poland

*Corresponding Author

E-mail address: fpierini@ippt.pan.pl

Keywords: stimuli-responsive hydrogel, short-filaments, injectability, multi-functional materials, antibacterial material, drug delivery, photo-thermal therapy

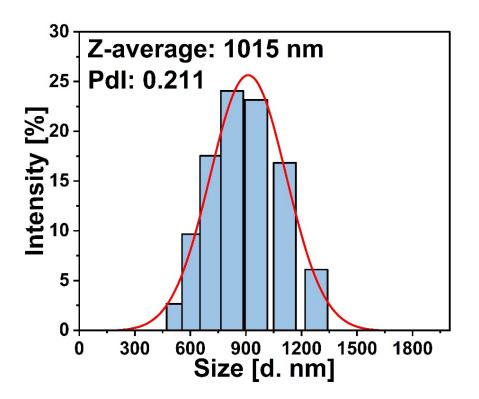


Fig. S1. The DLS measurement representing the PDA particle distribution, average size, and PDI.

Formulation	PF127 (%)	SA (%)	PDA (%)	SFs (%)	T_{gel} (°C)
PF127/SA1	15	1,5	0	0	-
PF127/SA2	17,5	1	0	0	25
PF127/SA3	17,5	1,5	0	0	27
PF127/SA4	17,5	2	0	0	-
PF127/SA5	20	1	0	0	23
PF127/SA6	20	1,5	0	0	25
PF127/SA7	17,5	1,5	0,5	1	30