Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Enzyme-triggered on-demand release of H₂O₂-self-supplying

CuO₂@Fe₃O₄ Nanoagent for enhanced chemodyamic

antimicrobial therapy and wound healing

Sijie Zhang^{a, b}, Sameer Hussain^a, Yuhai Tang^a, Kaili Wang^b, Xingyan Wang^a, Long Zhang^b, Yuheng Liao^c, Chen Wang^c, Yi Hao^{a, b*} and Ruixia Gao^{a*}

^aSchool of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

^bSchool of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China

^cHealth Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China

Correspondence to: Yi Hao, E-mail: <u>haoyi8904@xjtu.edu.cn</u> Prof. Ruixia Gao, E-mail: <u>ruixiagao@xjtu.edu.cn</u>

Figure S1. DLS size distribution of Fe₃O₄(a), CP@Fe₃O₄(b) and HA-CP@Fe₃O₄(c).

Element Line	Weight %	Weight % Sigma
С	45.0	0.5
Fe	29.7	0.6
Cu	17.0	0.4
0	8.2	0.2

b

Figure S2. Applying EDS for elemental analysis. A) Qualitative analysis: The peaks in the EDS spectrum represent C, Fe, Cu and O elements in HA-CP@Fe₃O₄. B) Quantitative analysis: Quantitative analysis is to obtain the content of C, Fe, Cu and O in HA-CP@Fe₃O₄ by X-ray intensity.

Figure S3. Room-temperature magnetic hysteresis loops of Fe₃O₄, CP@Fe₃O₄ and HA-

CP@Fe₃O₄.

Figure S4. XRD patterns of Fe_3O_4 (black line) $CP@Fe_3O_4$ (red line) and HA-CP@Fe_3O_4 (blue line).

Figure S5. (a) The concentration of H_2O_2 was quantified by the absorbance of the product from the reaction of KI with H_2O_2 . (b) Taking a fixed KI concentration as the reference, the absorbance was measured under different concentrations of H_2O_2 to obtain a calibration curve.

Figure S6. Absorption spectra of MB solution with HA-CP@ Fe_3O_4 at increasing time intervals.

Figure S7. Fenton activity of HA-CP@Fe₃O₄ (200 µg/mL) at different pH after 60 min

reaction.

Figure S8. Russell reaction mechanism.

Figure S9. (a) Images of the LB agar plates of *S. aureus* treated with different concentrations of HA-CP@Fe₃O₄. (b) Images of the LB agar plates of *E. coli* treated with different concentrations of CP@Fe₃O₄.

Figure S10. (a) Images of the LB agar plates of *S. aureus* treated with different concentrations of CP@Fe₃O₄. (b) Images of the LB agar plates of *E. coli* treated with different concentrations of HA-CP@Fe₃O₄.

Figure S11. (a) Statistical analysis of *S. aureus* treated with different concentrations of CP@Fe₃O₄. (b) Statistical analysis of *E. coli* treated with different concentrations of HA-CP@Fe₃O₄. (c) Statistical analysis of *E. coli* treated with different concentrations of CP@Fe₃O₄.

Figure S12. Bacteria isolated from wound tissue after different treatments were cultured on agar plates.

Figure S13. Bacterial viability from the infected wound tissues after treatment with different groups.

Figure S14. The survival rate of L929 cells after treatment with different concentrations

of CP@Fe₃O₄ for 24 h.