Supporting Information

Amphiphilic multi-targeting copolymer micelles efficiently deliver

pZNF580 to promote endothelial cell proliferation and migration

Chen Li^{ab}[†], Qirong Xu^{ab}[†], Xiangyan Meng^c, Xinghong Duo^{*ab}, Yakai Feng^{*de}

- * Corresponding authors
- a School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, Qinghai, 810007, PR China. E-mail: <u>wlkdxh@tju.edu.cn</u>
- key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining, Qinghai, 810007, PR China
- c Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin,
 300072, PR China
- d School of Chemical Engineering and Technology, Tianjin University, Tianjin,
 300350, PR China. E-mail: <u>yakaifeng@tju.edu.cn</u>
- e Key Laboratory of Systems Bioengineering (Ministry of Education), TianjinUniversity, Tianjin, 300072, PR China
- [†] These authors contributed equally to this work and should be regarded as co-first.

Experimental Methods

Preparation and characterization of copolymers

Preparation and characterization of P(CL-co-MMD)(PCLMD).

PCLMD copolymers were obtained by initiating the ring-opening polymerization of ε caprolactone with 3-methylmorpholine-2,5-dione (MMD) using saturated short-chain diols (C_nH_{2n+2}O₂, n=8) as initiator and stannous octanoate (Sn(Oct)₂) as catalyst. MMD (2.68 g), ε caprolactone (8.0 mL), 1,8-octanediol (0.30 g) and freshly prepared Sn(Oct)₂ (1 mL) toluene solution were added to the polymerization tube and sealed in a nitrogen atmosphere. After 3 times of vacuum filling with nitrogen, the reaction was carried out at 150 °C for 24 h. The crude product was dissolved with trichloromethane and precipitated with excess cold CHCl₃. The precipitate was dried under vacuum for 24 h to obtain the product PCLMD.

Figure S1. The GPC curve of polymer PCLMD.

Preparation and characterization of P(CL-co-MMD)-g-PPEGMA (PCLMD-PPEGMA) copolymer.

According to the method reported in the literature³³, PCLMD-PPEGMA copolymer was synthesized through ATRP atom transfer radical polymerization using PCLMD-Br as the

macroinitiator and CuBr/bipyridine as the catalyst. Dissolve P(CL-co-MMD)-Br (3.5 g), PEGMA (2.5 g, 5.0 mmol) and bipyridine (0.1 g, 0.60 mmol) in 10 mL of 2-butanone in a dry Schlenk flask. After the mixture was degassed through freeze-vacuum-thaw cycles (3 times), CuBr (0.07 g, 0.40 mmol) was added to the Schlenk flask under nitrogen protection. After three freeze-vacuum-thaw cycles, the reaction was carried out at 50 °C for 24 h. The solution was then passed through a neutral alumina (Al₂O₃) column using chloroform as the eluent to remove the copper catalyst. PCLMD-PPEGMA copolymer was obtained by precipitating in cold n-hexane and drying in vacuum until constant weight. A nanoparticle sizer (Zetasizer 3000 HS, Malvern Instruments, UK) was used to measure the particle size and zeta potential of the copolymer.

Figure S2. The GPC curve of polymer PCLMD-PPEGMA.

Preparation and characterization of P(CL-co-MMD)-g-PPEGMA-g-NLS-TAT-REDV (P CLMD-PPEGMA-NLS-TAT-REDV) copolymer.

It was prepared by introducing NLS-TAT-REDV polypeptide onto PCLMD-PPEGMA usi ng NHS-PEG-OPSS as the linking agent. Dissolve 0.25 g PCLMD-PPEGMA in 25 mL D MSO. Take 5 mL of 10 mg/mL PCLMD-PPEGMA copolymer solution in a bottle with m agnetic stirring, and add 5 mL of 10 mg/mL OPSS-PEG-NHS DMSO solution dropwise. After stirring for 2 h, 5 mL of 10 mg/mL DMSO solution containing NLS-TAT-REDV p olypeptide was added, and then the reaction was stirred at room temperature overnight. Th e product was subjected to dialysis and freeze-drying before use.

Figure S3. The GPC curve of polymer PCLMD-PPEGMA-NLS-TAT-REDV.

Table 1. The Mn and Mw values for PCLMD, PCLMD-PPEGMA and PCLMD-PPEGMA-NLS-TAT-REDV.

Sample	Mn (kDa)	Mw (kDa)	Mz (kDa)	Mw/Mn
PCL-co-MMD	4.93	11.45	35.41	2.32
(PCL-co-MMD)-g-PPEGMA	6.35	16.86	52.08	2.65
(PCL-co-MMD)-g-PPEGMA-g-NLS-TAT- REDV	6.82	19.21	55.68	2.82

Preparation and characterization of gene complex micelles.

The 0.5 mg/mL pZNF580 (dissolved in PBS) was added dropwise to the PCLMD-PPEG MA-NLS-TAT-REDV solution and mixed, and allowed to stand at room temperature for 3 0 min. pZNF580 concentration was adjusted to obtain different weight ratios of (w/w_{pZNF58} $_0 = 0.25, 0.5, 1, 2, 3, 4$) multi-targeting gene complex micelles (TCMs@pZNF580). NTC Ms@pZNF580 were prepared using the same method. A nanoparticle sizer (Zetasizer 3000 HS, Malvern Instruments, UK) was used to measure the particle size and zeta potential of

the gene complex micelles.

W/W _{pZNF580}	Size (nm)	PDI	Zeta potential (mV)
0.25	165.68±0.95	0.30±0.06	24.58±1.25
0.5	168.35±2.80	0.41±0.27	24.26±1.32
1	172.42±1.67	0.34±0.15	23.85±0.54
2	181.15±1.74	0.35±0.16	23.58±1.75
3	183.86±1.32	0.31±0.12	23.51±1.45
4	189.31±0.25	0.30±0.08	23.28±0.75

Table 2. The changes of particle size, PDI and zeta-potential forPCLMD-PPEGMA-NLS-TAT-REDV/pZNF580.

References

[33] Q. Li, X. F. Hao, J. Lv, X. K. Ren, K. Y. Zhang, I. Ullah, Y. K. Feng, C. C. Shi and W. C. Zhang, *J. Mater. Chem. B*, 2017, **5**, 1673-1687.