ELECTRONIC SUPPLEMENTARY INFORMATION

Tailoring the Structure and Self-Activated Photoluminescence of Carbonated Amorphous Calcium Phosphate Nanoparticles for Bioimaging Applications

Thales R. Machado,^{a,*} Carlos E. Zanardo,^a Raquel R.C. Vilela,^a Renata R. Miranda,^a Natália S. Moreno,^a Celisnolia M. Leite,^a Elson Longo,^b and Valtencir Zucolotto^{a,*}

^b CDMF - Center for the Development of Functional Materials, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.

*Corresponding author: trmachado@ifsc.usp.br (T.R. Machado) zuco@ifsc.usp.br (V. Zucolotto)

^a GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.

Samples	nCa ²⁺ (mmol)	nPO4 ³⁻ (mmol)	nCO ₃ ²⁻ (mmol)	CO ₃ ²⁻ /PO ₄ ³⁻ molar ratio
ACP1	9	6	-	-
ACP2	9	6	0.375	0.0625
ACP3	9	6	0.75	0.125
ACP4	9	6	1.5	0.25
ACP5	9	6	3	0.5
ACP6	9	6	6	1
ACP7	9	6	12	2
ACP8	9	6	24	4

Table S1. ACP samples prepared by chemical precipitation and initial amounts of the precursors.

Fig. S1. The carbonate weight percentage (w(CO₃)) was determined using the methodology developed by Grunenwald et al. [1], which utilizes FTIR spectroscopy for accurate carbonation analysis in CaP samples including HA and ACP [2,3]. As shown in this figure for ACP3-HT sample, the w(CO₃) was calculated by estimating the ratio $r_{c/p}$ between the integrated areas of the observed v_3CO_3 bands at ~1590-1350 cm⁻¹ and v_1, v_3PO_4 bands at ~1300-900 cm⁻¹ after conducting a baseline correction and normalization to the v_3PO_4 mode with the highest absorbance value. Subsequently, the obtained $r_{c/p}$ values were used in the equation w(CO₃) = 28.62 * $r_{c/p}$ + 0.0843 to determine the overall degree of carbonation.

Fig. S2. Standard curve generated from absorbance values at 210 nm, corresponding to the absorption of citrate ions.

Fig. S3. FTIR spectra evidencing a band between 2500-2100 cm⁻¹ attributed to the presence of HPO_4^{2-} in as-synthesized samples [4,5].

Table S	52. wCO ₃	estimated l	by elemental	analysis	of two	representative	e samples.
---------	-----------------------------	-------------	--------------	----------	--------	----------------	------------

Sample	wCO ₃ (wt.%)
ACP3	2.87
ACP8	27.01

Fig. S4. (a) TGA curves for the as-synthesized ACP NPs, and (b) their corresponding DTG curves.

Fig. S5. FWHM of v_3 , v_4 PO₄ bands calculated from the FTIR spectra of as-synthesized samples.

Fig. S6. Excitation spectra for (a) ACP3 NPs and (b) ACP3-HT NPs. The broad and intense bands at 255 nm and 241 nm for ACP3 and ACP3-HT samples, respectively, are attributed to transitions primarily involving band states [5]. The inset in (a) illustrates the defect states contributing to the observed PL emission for ACP3 NPs. Conversely, defect states are predominant in the excitation spectra of ACP3-HT and are distributed across the entire visible spectrum, facilitating the occurrence of PL emission even with low excitation wavelengths.

Fig. S7. PL emission spectra of ACP3 and ACP3-HT samples at distinct excitation wavelengths. (a) $\lambda_{\text{exc}} = 405 \text{ nm}$, (b) $\lambda_{\text{exc}} = 488 \text{ nm}$, (c) $\lambda_{\text{exc}} = 561 \text{ nm}$, and (d) $\lambda_{\text{exc}} = 640 \text{ nm}$.

Fig. S8. PL emission spectra of all carbonated ACP NPs samples at distinct excitation wavelengths. (a,b) $\lambda_{exc} = 488$ nm, (c,d) $\lambda_{exc} = 561$ nm, and (e,f) $\lambda_{exc} = 640$ nm.

Fig. S9. FTIR spectra of ACP3-HT and Cit/ACP3-HT evidencing the successful functionalization of the NPs with citrate ions.

Fig. S10. Zeta potential of Cit/ACP3-HT NPs estimated at various pH values.

Fig. S11. Mean size of Cit/ACP3-HT NPs measured at different time intervals.

Fig. S12. Second derivate FTIR spectra for v_3PO_4 modes of ACP3-HT NPs in water.

Fig. S13. Second derivate FTIR spectra for v₃PO₄ modes of Cit/ACP3-HT NPs in PBS (pH 7.4).

Fig. S14. Integrated emission area of ACP3-HT and Cit/ACP3-HT dispersed at 1mg.mL⁻¹ in water.

Fig. S15. PL emission spectra of Cit/ACP3-HT NPs in distinct aqueous environments and time intervals, measured at (a) $\lambda_{exc} = 488$ nm, and (b) $\lambda_{exc} = 561$ nm.

Fig. S16. (a,b) PL emission spectra of Cit/ACP3-HT NPs dispersed at 1 mg.mL⁻¹ in PBS (pH 7.4) at distinct time intervals, and (c) their corresponding integrated emission areas.

Fig. S17. (a,b) PL emission spectra of ACP3-HT NPs dispersed at 1 mg.mL⁻¹ in PBS (pH 7.4) at distinct time intervals, and (c) their corresponding integrated emission areas.

Fig. S18. (a,c) PL emission spectra of Cit/ACP3-HT NPs dispersed at 1 mg.mL⁻¹ in Tris-HCl buffer (pH 7.4) at distinct ionic strengths, and (b,d) their corresponding integrated emission areas.

References

- A. Grunenwald, C. Keyser, A.M. Sautereau, E. Crubézy, B. Ludes, C. Drouet, Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology, J Archaeol Sci 49 (2014) 134– 141. https://doi.org/10.1016/j.jas.2014.05.004.
- [2] M. Luginina, R. Orru, G. Cao, M. Luginina, D. Grossin, F. Brouillet, G. Chevallier, C. Thouron, C. Drouet, First successful stabilization of consolidated amorphous calcium phosphate (ACP) by cold sintering: Toward highly-resorbable reactive bioceramics, J Mater Chem B 8 (2020) 629–635. https://doi.org/10.1039/c9tb02121c.
- [3] C. Ortali, I. Julien, C. Drouet, E. Champion, Influence of carbonation on the low-temperature consolidation by Spark Plasma Sintering of carbonated calcium phosphate bioceramics, Ceram Int 46 (2020) 5799–5810. https://doi.org/10.1016/j.ceramint.2019.11.030.
- [4] J. Xu, I.S. Butler, D.F.R. Gilson, FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO₄·2H₂O) and anhydrous dicalcium phosphate (CaHPO₄), Spectrochimica Acta Part A 55 (1999) 2801–2809.
- [5] T.R. Machado, J.S. da Silva, R.R. Miranda, V. Zucolotto, M.S. Li, M.V.M. de Yuso, J.J. Guerrero-González, I.L.V. Rosa, M. Algarra, E. Longo, Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence, Chemical Engineering Journal 443 (2022) 136443. https://doi.org/10.1016/j.cej.2022.136443.