Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Multifunctional hydrogel dressing based on fish gelatin/oxidized hyaluronate for promoting diabetic wound healing

Dong-Joo Park^{a,b}, Se-Chang Kim^{a,b}, Jin-Bok Jang^{a,b}, Bonggi Lee^c, Seungjun Lee^c, Bomi Ryu^c, Jae-Young Je^d, Won Sun Park^e and Won-Kyo Jung^{a,b,f*}

- ^a Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
- ^b Marine integrated Biomedical Technology center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- ^c Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
- ^d Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan 48513, South Korea
- ^e Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
- ^f Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea

* Corresponding author. Won-Kyo Jung, Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea. E-mail: wkjung@pknu.ac.kr; Tel.: +82-051-629-5775

Hydrogel	Name	Degree of crosslinking
(FG:OHy)		(%)
8:2	FOHI	71.50 ± 0.31
6:4	FOHII	49.64 ± 0.55

Table S1. Degree of crosslinking of hydrogels using ninhydrin assay.

% Degree of crosslinking = $\frac{non \ crosslinked \ sample \ (FG) - \ crosslinked \ sample \ (Hydrogel)}{|I| \ |I| \ |I|$ non crosslinked sample (FG)

Figure S1. The effect on (A) cell viability and (B) NO levels after treatment with extracted fish gelatin (FG), porcine gelatin (PG) and oxidized hyaluronate (OHy) in LPS-induced RAW 264.7 macrophage.

Figure S2. The viscoelasticity–angular frequency curve in the rheological characterization of fabricated hydrogels.

Figure S3. Direct contact testing of hydrogels for 24 h. Fluorescence microscopic images of Live/Dead staining of (A) HDF and (B) HaCaT cells after co-incubation of hydrogels.

Figure S4. (A) Representative images of the wounds treated with or without hydrogels at day 0, 3, 7, 10 and 14 post-wounding in non-diabetic mice. (B) Quantification of relative wound area.