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Distribution of E f , µ, and Eg in AiAiiB4X8 structures

The distributions of DFT-calculated formation energy (E f ), magnetic moment (µ), and band gap (Eg) in

AiAiiB4X8 structures are shown in Figure 1. In Figure 1 (a), the majority of structures have formation

energy per unit cell between -1 and 1 eV. Also, there exist more X = Te structures with positive formation

energies (towards the right) than X = Se and X = S.

The distribution of magnetic moment in Figure 1 (b) shows that the majority of AiAiiB4X8 structures

have magnetic moment per unit cell close to 2 µB irrespective of elements at the X sites. This is why our

ML model has a better performance around this value. The accuracy of the ML models is proportional

to the amount of training data. The performance deteriorates as we go far from the center of the dis-

tribution. Therefore, we expect that adding more structures with magnetic moments to the left or right

of the center of the distribution will improve the overall ML performance. Additionally, in the region of

higher magnetic moments, the distribution shows there are more structures with X = Te and X = Se as

compared to X = S.

The distribution of band gaps (Figure 1 (c)) shows that most of the structures are metallic. Also, struc-

tures with X = S lie in the larger band gap region while structures with X = Se and X = Te lie in the

smaller band gap region. It will be interesting to investigate the nature of the band gap in future studies.

This gives insight into the topological properties of the materials.
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Figure 1: Distribution of (a) formation energy, (b) magnetic moment, and (c) band gap in AiAiiB4X8
structures

Descriptors

We construct the chemical descriptors from 11 different atomic properties. There are 5 distinct operations

for constructing descriptors from each atomic property. The atomic properties are obtained from the

Mendeleev python package1. Thus, a total of 55 descriptors are considered in our ML models. Table 1

shows the 11 atomic properties and 5 distinct operations along with their naming conventions.

Table 1: Atomic properties and the mathematical transformations used to construct the descriptors

Atomic properties, P Distinct descriptor operations
van der Waals radius (vdW rad) combined average (avg)
covalent radius (covalent rad) ( 1

n ∑P)
atomic radius (atomic rad) difference between Ai and Aii sites (∆AiAii)
atomic volume (atomic vol) (|P(Ai)−P(Aii)|)

dipole polarizability (dipole pol) difference between B and X sites (∆BX)
number of valence electrons (val elect) (|P(B)−P(X)|)

number of unpaired electrons (unp elect) maximum difference among all sites (max diff)
ionization energies (ion energy) (max(|P(Ai)−P(Aii)|, |P(B)−P(X)|, ....))

total number of electrons (no elect) combined standard deviation (std)

electronegativity (electroneg) (
√

1
n−1 ∑(P−P)2 )

electron affinity (elect aff)

Top descriptors for the formation energy prediction

The top 3 descriptors for predicting the formation energy are the difference in atomic volume between

B and X sites, the difference in electron affinity between Ai and Aii sites, and the standard deviation of

electronegativity among all sites. Table 2 shows the top 10 descriptors.

Figure 2 shows the scatter plots of the top three descriptors with respect to E f . It shows that the

formation energy and the atomic volume are inversely related (Figure 2(a)). i.e. E f decreases when the
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Table 2: Top 10 descriptors for the formation energy prediction

Rank Descriptors Rank Descriptors
1 atomic vol (∆BX) 6 cov rad (max diff)
2 elect aff (∆AiAii) 7 electroneg (max diff)
3 electroneg (std) 8 cov rad (∆AiAii)
4 atomic vol (∆AiAii) 9 electroneg (∆AiAii)
5 dipol pol (std) 10 atomic vol (avg)

difference in atomic volume (∆BX) increases. A similar pattern is observed in the case of electronegativity

(Figure 2(c)). In Figure 2(b), E f increases when the electron affinity (∆AiAii) increases.

Figure 2: Scatter plots of top 3 descriptors for formation energy prediction

Top descriptors for the magnetic moment prediction

The top 3 descriptors for predicting the magnetic moment are the average number of unpaired electrons,

the average electron affinity, and the standard deviation (std) of valence electrons. Table 3 shows the

top 10 descriptors.

Table 3: Top 10 descriptors for the magnetic moment prediction

Rank Descriptors Rank Descriptors
1 unp elect (avg) 6 val elect (∆AiAii)
2 elect aff (avg) 7 unp elect (std)
3 val elect (std) 8 no elect (∆AiAii)
4 val elect (max diff) 9 dipole pol (avg)
5 vdW rad (∆AiAii) 10 unp elect (∆AiAii)

Figure 3 shows the scatter plots of top three descriptors. It shows that the extrema of magnetic

moments correspond to the higher number of unpaired electrons (Figure 3 (a)) and lower std of valence

electrons (Figure 3 (c)). In addition, the average electron affinity is also determining factor of magnetic

moment as shown in Figure 3 (b).
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Figure 3: Scatter plots of top 3 descriptors for magnetic moment prediction

Top descriptors for the band gap prediction

Table 4 shows the 10 most important descriptors for predicting the band gap. Average unpaired electrons,

average dipole polarizability, and average valence electrons are the first three important descriptors.

Table 4: Top 10 descriptors for the band gap prediction

Rank Descriptors Rank Descriptors
1 unp elect (avg) 6 elect aff (∆AiAii)
2 dipole pol (avg) 7 ion energy (avg)
3 val elect (avg) 8 vdW rad (∆AiAii)
4 val elect (∆BX) 9 vdW rad (avg)
5 unp elect (∆BX) 10 electroneg (avg)

Figure 4 shows the scatter plots of the top three descriptors for the band gap. It shows that the band

gap is larger in the region where the average number of unpaired electrons is higher (Figure 4(a). Also,

it increases with average valence electrons (Figure 4(c)). However, the relationship between band gap

and with dipole polarizability is showing an opposite trend as shown in Figure 4(b).

Figure 4: scatter plots of the top 3 descriptors for the band gap prediction
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Hyperparameters for ML models

We tune the hyperparameters in all three random forest regression models to optimize the performance.

The optimized hyperparameters for formation energy, magnetic moment, and band gap are presented in

Table 5.

Table 5: Hyperparameters used to optimize the random forest model predictions for three distinct targets:
formation energy, magnetic moment, and band gap

Hyperparameter Formation energy Magnetic moment Band gap
max_depth 20 24 16

max_features auto auto auto
min_samples_leaf 2 2 2
min_samples_split 4 4 2

n_estimators 30 10 20

Dynamic stability of predicted structures

We test the dynamic stability of the pure MBT monolayer and all the predicted structures by perform-

ing two calculations: (i) phonon spectra, and (ii) ab initio molecular dynamics (AIMD) simulations at

high temperatures. The phonon calculations are performed on large supercells size (4 × 4 × 1) using

the finite displacement method as implemented in the Phonopy package2. From the calculations, we

find that there are no significant imaginary phonon frequencies or soft modes in the phonon spectra

of the Mn2Bi4S8, Mn2Sb2Bi2S4Se4, Mn2Sb2Bi2Se4Te4, Mn2Sb2Bi2Se8, Mn2Sb4Se4Te4, and Mn2Bi4S4Se4

monolayer structures, thus implying their dynamical stability. A very small negative frequency near the

Γ point in the Brillouin zone is due to a numerical artifact in the calculations. This can be removed by

using much tighter convergence criteria or increasing the supercell size during the simulations. How-

ever, we see significant negative frequencies between Γ and M in the phonon spectrum of MnSbBiS2Te2.

This indicates that the structure is dynamically metastable or unstable. We expect that there are stable

competing phases of Mn2Sb2Bi2S4Te4, the exploration of which is outside the scope of this work.

The AIMD simulations are carried out on supercells size (3 × 3 × 1) at 500 K for 20 ps with a time step

of 2 fs. The potential energy profiles are plotted as a function of time. The energy profile shows that

the total energy fluctuates during the entire simulation period of 20 ps without any sudden drops in the

energy. This indicates that the predicted structures are stable at high temperatures.

This stability implies that the predicted materials are promising candidates for further investigation,

leading toward a set of promising candidates for synthesis3. We also note that an additional test that fur-

ther bolsters synthesizability is calculating the energy above the convex hull. Nevertheless, this does not

guarantee that the materials can be synthesized. There’s also the fact that metastable phases, although

not the lowest energy phases, may still be synthesized in the experiment4;5;6;7;8. The convex hull anal-

ysis will still provide useful information on the chemical stability and synthesizability of the predicted
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materials. We hope that this present study will motivate other researchers to investigate the competing

phases of the most promising materials candidates identified in this study.

Figure 5: Phonon dispersion of the Mn2Bi4Te8 (MBT) monolayer. (b) Energy profile of Mn2Bi4Te8
monolayer during AIMD simulation at 500 K over 20 ps.

Figure 6: Phonon dispersion of the Mn2Bi4S8 monolayer. (b) Energy profile of Mn2Bi4S8 monolayer
during AIMD simulation at 500 K over 20 ps.
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Figure 7: Phonon dispersion of the Mn2Sb2Bi2S4Se4 monolayer. (b) Energy profile of Mn2Sb2Bi2S4Se4
monolayer during AIMD simulation at 500 K over 20 ps.

Figure 8: Phonon dispersion of the Mn2Sb2Bi2S4Te4 monolayer. (b) Energy profile of Mn2Sb2Bi2S4Te4
monolayer during AIMD simulation at 500 K over 20 ps.
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Figure 9: Phonon dispersion of the Mn2Sb2Bi2Se4Te4 monolayer. (b) Energy profile of Mn2Sb2Bi2Se4Te4
monolayer during AIMD simulation at 500 K over 20 ps.

Figure 10: Phonon dispersion of the Mn2Sb2Bi2Se8 monolayer. (b) Energy profile of Mn2Sb2Bi2Se8
monolayer during AIMD simulation at 500 K over 20 ps.
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Figure 11: Phonon dispersion of the Mn2Sb4Se4Te4 monolayer. (b) Energy profile of the Mn2Sb4Se4Te4
monolayer during AIMD simulation at 500 K over 20 ps.

Figure 12: Phonon dispersion of the Mn2Bi4S4Se4 monolayer. (b) Energy profile of Mn2Bi4S4Se4 mono-
layer during AIMD simulation at 500 K over 20 ps.
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Data availability

The dataset (generated from the density functional theory calculations) that supports the finding of the

study will be made available upon reasonable request.
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