Supporting Information

Designed hollow Ni₂P/TiO₂ S-scheme heterojunction for remarkably enhanced photoelectric effect for solar energy harvesting and conversion

Youbo Nan ^{a,c}, Xiutong Wang ^{a,b,c,d*}, Shaohua Xing ^e, Hui Xu ^a, Jianmin Niu ^f,

Meipeng Ren^g, Teng Yu^a, Yanliang Huang^a, Baorong Hou^a

^a Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute

of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China

^b Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for

Marine Science and Technology, Qingdao, 266237, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

^d Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao,

266071, China

^e State Key Laboratory for Marine Corrosion and Protection, Luoyang ship material research institute, Qingdao 266237, China

^f Shanghai Shipbuilding Technology Research Institute, Shanghai 200032, China

^g CNOOC Research Institute Ltd., Beijing 100028, China

Density functional theory calculations

The Vienna Ab Initio Package (VASP)^{1, 2} was employed to perform all the density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the PBE³formulation. The projected augmented wave (PAW) potentials ^{4, 5} to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of

400 eV. Partial occupancies of the Kohn–Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10^{-4} eV. The Ni₂P (111) surface had been obtained from the Ni₂P bulk structures with the lattice parameters (a=13.5214Å, b=6.7607Å, c=23.520Å). And the fourlayers had been chosen in the Ni₂P (111) surface. In addition, the TiO₂(101) surface had been obtained from the supercell TiO₂ bulk structures with the lattice parameters (a=10.4632Å, b=7.6054Å, c=27.971Å). The Ni₂P/TiO₂ structures had been established using the Ni₂P (111) surface and TiO₂(101) surface with 10-layers. Finally, the optimized lattice parameters is a=11.9923Å, b=7.1831Å, c=36.5191Å. And interface Mismatch is less than 10%. A geometry optimization was considered convergent when the force change was smaller than 0.04 eV/Å. During structural optimizations, the 2×2×1 Monkhorst-Pack k-point grid for Brillouin zone was used for kpoint sampling, and all atoms were allowed to relax. In addition, the U correction had been set as 3.69 eV and 4.25 eV for Ni and Ti atoms in our systems.

Fig. S1 Schematic diagram of the i-V and EIS curve test device

Fig. S2 Schematic diagram of the photoelectric chemical test device: (a) OCP and (b) j-t

Fig. S3 The pore size distribution of TiO_2 nanotubes

Fig. S4 Top-view SEM images of Ni_2P/TiO_2 -30

Fig. S5 (a-e) TEM image of single Ni₂P/TiO₂-15 nanotube

Note S1: TEM image of Ni₂P/TiO₂-15 and its elemental mapping

To explore the distribution of Ni₂P on the surface of the TiO₂ NTs and the inner wall of the tube, a transmission electron microscope line scan was used to characterize the types and contents of elements at various points in a certain line of sample Ni₂P/TiO₂-15. In addition, the distribution state of the tubular structural elements of the prepared sample was characterized by means of a mapping scan. Fig. S6 (a-e) shows the TEM image of Ni₂P/TiO₂-15 and the corresponding surface scanning map. The distribution of Ti, O, P and Ni elements presents a hollow tubular shape, and P and Ni are uniformly distributed across the entire nanotube. Notably, a large number of obvious rod-like granular distribution patterns are not found on the inner wall of TiO₂ NTs. The possible reason is that the supply of precursor liquid in the tube hindered the growth of Ni₂P nanoparticles. Fig. S6 (f) is the EDS spectrum of Ni₂P/TiO₂-15, which shows that it is composed of Ti, O, P and Ni. Fig. S6 (g) shows the 400 nm long-line scan spectrum of the Ni₂P/TiO₂-15 nozzle. It can be observed from the figure that the distribution of Ti, O, P and Ni presents an increase in the protrusion content of the nozzle, and the closer to the center of the tube, the elements become less distributed.

The distribution of Ti and O indicates that TiO_2 has a hollow tubular structure with a certain thickness. The distribution characteristics of P and Ni indicate that Ni₂P is mainly distributed in the TiO₂ nanotube mouth, and its morphology also shows a hollow tubular structure, that is, its morphology is similar to the distribution of Ti and O but is not completely consistent. It can be observed that P and Ni protruding at the mouth of the tube is slightly offset, showing an irregular and messy distribution of rod-shaped Ni₂P nanoparticles at the mouth of the TiO₂ NTs instead of being completely covered in a planar shape. This is consistent with the phenomenon observed by SEM and high-resolution TEM.

Fig. S7 shows the single Ni_2P/TiO_2 -15 nanotube and its line scan elemental mapping. As observed, P and Ni are evenly distributed on TiO_2 NTs in a semi-circular shape, consistent with the distribution state of Ti and O elements.

Fig. S6 (a-e) TEM image of Ni_2P/TiO_2-15 and its elemental mapping; (f) EDS images of Ni_2P/TiO_2-15 ;(g) line scan of the Ni_2P/TiO_2-15 nozzle

Fig. S7 (a) TEM image of single Ni_2P/TiO_2 -15 nanotube and its line scan elemental mapping

Fig. S8 XPS survey spectra of the Ni₂P/TiO₂-15 sample; (b-c) high-resolution

XPS spectra of Ni 2p and P 2p of the Ni₂P/TiO₂-15 sample

Fig. S9 EDS spectra of the Ni_2P/TiO_2 -1 sample

Samples	Atomic percentages, %				
Sumples	Р	Ni	0	Ti	
Ni ₂ P/TiO ₂ -1	0.2	0.5	39.4	59.9	
Ni ₂ P/TiO ₂ -15	0.4	0.7	46.8	52.0	
Ni ₂ P/TiO ₂ -30	0.4	0.9	29.6	69.1	

Table S1 Atomic percentages of the elements in Ni₂P/TiO₂ composite

Table S2. Parameter values of fitting decay curve and calculated values of carrier lifetime.

Samples	τ1	A1	τ2	A2	τ
TiO ₂	1.42	858.47	13.36	140.31	8.65
Ni ₂ P/TiO ₂ -1	1.64	938.19	14.56	129.33	8.75
Ni ₂ P/TiO ₂ -15	2.55	1475.26	31.24	80.06	14.00
Ni ₂ P/TiO ₂ -30	1.46	885.31	14.88	128.37	9.46

Fig. S10 (a) Nyquist plots of the TiO_2 NTs and Ni_2P/TiO_2 composites; (b) Bode plots of

the TiO₂ NTs and Ni₂P/TiO₂ composites

Fig. S11 Mott-Schottky plots of TiO $_2$ NTs, Ni $_2$ P and Ni $_2$ P/TiO $_2$ composites

Table S3 Work function value under vacuum environment and solvent effect.

	Work function	We de ferretien of	
Samples	of	work function of	$\Delta \Phi$
	Vacuumina	solvation	
	vacuunning		
$TO NT_{2}$	5 10	4 272	0.7
110_2 IV15	5.10	4.372	28
Ni ₂ P	3.46	3.712	-
			0.252
Ni ₂ P/TiO ₂			0.6
composite	4.53	3.872	58
composite			20

Fig. S12 (a) ESR spectra of TiO₂ NTs, Ni₂P and Ni₂P/TiO₂ for DMPO- \cdot O₂ – in dark; (b) ESR spectra of TiO₂ NTs, Ni₂P and Ni₂P/TiO₂ for DMPO- \cdot OH in dark

Table S4 OCP of the 304ss electrode coupled with the TiO₂ NTs and Ni₂P/TiO₂

• ,	1 / 1	1	•11 • /	•
composite	nhotoanode	s under	11111111111111111	10n
composite	photoanou	s under	mumma	JUII
1	1			

Samples	$TiO_{2} NT_{2}$	Ni ₂ P/TiO	Ni ₂ P/TiO	Ni ₂ P/TiO
	1102 1115	2 - 1	₂ -15	₂ -30
OCP (V)	-0.46	-0.75	-0.83	-0.78

Fig. S 13 j-t curves of the 304ss electrode coupled with the TiO_2 NTs and Ni_2P/TiO_2 composite photoanodes under visible light

Table S5 j value of the 304ss electrode coupled with the TiO_2 and Ni_2P/TiO_2

Samples	TiO ₂ NTs	Ni ₂ P/TiO	Ni ₂ P/TiO	Ni ₂ P/TiO
	11021115	2 -1	2 -15	₂ -30
j (μA/cm ²)	6.9	55.2	209.4	104.6

composite photoanodes under illumination

Table S6 Performance comparison with reported articles.

Systems	Strategy	Metal	Current density (µA/cm²)	OCP (mV)	Stability/h
This work	S-scheme	304ss	209.4	-830	50

MOF/TiO ₂ ⁶	Type-II heterojunction	304ss	20.0	-730	48
CuInS ₂ /TiO ₂ ⁷	Type-II heterojunction	316Lss	46.5	-860	/
PDA/TiO ₂ ⁸	Type-II heterojunction	304ss	42.0	-780	15
ZnWO ₄ /TiO ₂ ⁹	Type-II heterojunction	304ss	54.0	-780	/
Ni ₃ S ₂ /TiO ₂ ¹⁰	Type-II heterojunction	304ss	53.0	-720	/

The test electrolytes is 0.1 mol L-1 Na_2S and 0.2 mol L-1 NaOH solutions. Light source is visible light.

Fig. S14 OCP-t curves of 304ss coupled with the Ni_2P/TiO_2 composite photoanodes under visible light for 50 h (25 cycles), and the inset the value of the 304ss surface protected under light conditions

References

- 1. G. Kresse and J. Furthmüller, *Computational Materials Science*, 1996, 6, 15-50.
- 2. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, **54**, 11169-11186.
- J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865-3868.
- 4. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 5. P. E. Blöchl, *Physical Review B*, 1994, **50**, 17953-17979.
- S. Guo, L. Chi, T. Zhao, Y. Nan, X. Sun, Y. Huang, B. Hou and X. Wang, Journal of Electroanalytical Chemistry, 2021, 880.
- W. Wang, Z. Yang, G. Li, Y. Zhang, W. Cao, J. Xu and R. Zheng, J. Alloy. Compd., 2022, 890.
- J.-Y. Pu, X.-T. Wang, J.-Q. Liu, M.-P. Ren, Y.-B. Nan, M.-S. Liu, H. Xu, L.-H. Yang, Y.-L. Huang and B.-R. Hou, *Journal of Electroanalytical Chemistry*, 2022, 914.
- 9. X. Wang, J. Lei, Q. Shao, X. Li, X. Ning, J. Shao, J. Duan and B. Hou, Nanotechnology, 2019, **30**, 045710.
- Y. Nan, X. Wang, X. Ning, J. Lei, S. Guo, Y. Huang and J. Duan, Surface and Coatings Technology, 2019, 377.