Electronic Supplementary Information

Electron transport bilayer with cascade energy alignment based on Nb_2O_5 -Ti₃C₂ MXene/TiO₂ for efficient perovskite solar cells

Hugo G. Lemos^a*, Jessica H. H. Rossato^a, Roberto A. Ramos Jr.^a, João V. M. Lima^a, Lucas J. Affonço^a,

Sergei Trofimov^b, Jose J. I. Michel^c, Silvia L. Fernandes^a, Boris Naydenov^b, and Carlos F. O. Graeff^a*

^a Department of Physics, School of Sciences, São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil

^b Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin

^c Department of Electrical and Electronic Engineering, The University of Melbourne, VIC 3010, Australia

Figure S1. XRD patterns of Ti_3AlC_2 MAX phase and $Ti_3C_2T_x$ MXene.

Figure S2. AFM images of Nb₂O₅ (a), Nb₂O₅-Ti₃C₂ (0.4 wt%) (b) and Nb₂O₅-Ti₃C₂ (0.8 wt%) (c) layers.

Figure S3. FE-SEM images of TiO₂ films on top of Nb₂O₅ (a), Nb₂O₅-Ti₃C₂ (0.4 wt%) (b) and Nb₂O₅-Ti₃C₂ (0.8 wt%) (c) layers.

Figure S4. Grain size distribution measurements of perovskite films on top of ETLs based on Nb₂O₅ (a), Nb₂O₅-Ti₃C₂ (0.4 wt%) (b) and Nb₂O₅-Ti₃C₂ (0.8 wt%) (c) layers.

Figure S6. Box plots of photovoltaic parameters of PSCs: (a) PCE (%); (b) J_{sc} (mA.cm⁻²); (c) V_{OC} (V) and (d) FF (%).

Figure S7. Photo-CELIV transient at varying voltage ramp rates.

Figure S8. Current (I) vs. Voltage (V) curves of Nb₂O₅ with and without Ti₃C₂.

Figure S9. Photo-CELIV transient at varying delay time for Nb₂O₅ (a) and Nb₂O₅-Ti₃C₂ (0.4 wt%) (b) and Nb₂O₅-Ti₃C₂ (0.8 wt%).

	α 1 1 1		C 1	C 1	1 .	1	•.• •	
	('alculated	noromotore	tor tha	tittod	charge carri	or done	itiae daee	NU CHIMNAG
I ADIC SI.		Darameters	IOI LIIC	muu	Unaige-Carri	u uuns	nics ucca	iv cuives.

Device	$n_1(x10^{14} \text{ cm}^{-3})$	$\tau_{I}(us)$	$n_2(x10^{14} \text{ cm}^{-3})$	$\tau_2(\mu s)$	R ²
Nh2Os	$\frac{3482+225}{3482+225}$	0.42 ± 0.12	1000000000000000000000000000000000000	$\frac{1}{844+132}$	0.987
$Ti_2C_2(0.4 \text{ wt}\%)$	14.68 ± 1.62	6.88 ± 0.23	-	-	0.998
$Ti_3C_2(0.8 \text{ wt}\%)$	5.34 ± 1.52	4.86 ± 0.33	-	-	0.991