Supplementary Information

Creation and Modulation of Ferromagnetism in

Antiferromagnetic Hematite Nanoplates

Jiayi Li¹, Zihan Wang¹, Sen Li², Chu Ye², Daojiang Gao¹, Jiangtao Wu^{*1},

Guoping Zhao^{*2} and Zuo-Guang Ye^{*3}

¹College of Chemistry and Materials Science, Sichuan Normal University, Chengdu

610068, China

²College of Physics and Electronic Engineering, Sichuan Normal University,

Chengdu 610068, China

³Department of Chemistry & 4D LABS, Simon Fraser University, Burnaby, BC, V5A

1S6, Canada

Corresponding author E-mail: jtwu@sicnu.edu.cn; zhaogp@uestc.edu.cn; zye@sfu.ca

S1: Saturation magnetization calculation.

The saturation magnetization of the {001} sample can be attributed to a large number of uncompensated spins on the surface and the bulk magnetization in α -Fe₂O₃ (250 K< T < 900 K):

$$M_{s} = \frac{N_{Fe}M_{Fe}}{2\rho\nu},\tag{1}$$

where, N_{Fe} denotes the uncompensated number of Fe atoms in each particle, contributing to the FM magnetization of the sample, $M_{Fe} = 5.9 \ \mu_{B}$ is the magnetic contribution from each Fe atom (high spin) with where 1 $\mu_B = 9.273 \times 10^{-21}$ erg/Oe. 5.256 g/cm³ is the density of α -Fe₂O₃ and *v* is the volume of each particle. A factor of 1/2 is added because statistically, only those half particles (with odd number of Fe layers) in the [001] direction will contribute to one layer of uncompensated Fe atoms, whereas for those with even number of layers, the magnetic moments of Fe atoms are canceled each other.

$$N_{Fe} = 2\gamma S, \tag{2}$$

where, γ is the iron atom density of the termination layer (for the {001} facets, γ is 4.6 atoms/nm²¹) and *S* is the surface area of each particle. A factor of 2 is added because there are two layer of un-canceled Fe³⁺ atom on the surface. Eq. (1) can be rewritten as:

$$M_{s} = \frac{2\gamma SM_{Fe}}{2\rho Sd} = \frac{\gamma M_{Fe}}{\rho d},$$
(3)

where, d is the thickness of each particle. Using the data mentioned above, M_s is calculated to be:

$$M_s(emu.g^{-1}) = 47.9/d(nm).$$
 (4)

Thus, the saturation magnetization is approximately inversely proportional to the thickness d of the {001} samples.

S2 VAMPIRE simulation

In this work, we use the open source atomistic simulator Vampire for the modeling of the α -Fe₂O₃ nanoplates. We adopt the following continuum-scale parameters from^{2, 3} with $M_{\rm s} = 1.84 \times 10^6$ A.m⁻¹, $K_{\rm u} = 2.0 \times 10^3$ J.m⁻³, $T_N = 950$ K, where the sublattice magnetization $M_1 = M_2 = 9.2 \times 10^5$ A.m⁻¹. Taking the directional unit cell parameters a = b = 0.504 nm and c = 0.229 nm (Fig. S1). Thus, the atomic-scale parameters can be

$$\mu_s = \frac{M_s V}{n_{at}} = 5.76 \mu_B, \qquad k_u = \frac{K_u V}{n_{at}} = 5.8 \times 10^{-24} J/atom,$$

$$J_{inter} = -\frac{3k_B T_N}{\epsilon z} = -6.42 \times 10^{-21} J.link \text{ and } J_{intra} = -\frac{2J_{inter}}{3} = 4.28 \times 10^{-21} J/link.$$
Here V is the volume of the unit cell, the number of nearest neighbors $z = 8$, the number of atoms per unit cell $n_{at} = 2$, J_{inter} is the interface exchange coupling constant, J_{intra} is the intra-
layer exchange constant, and the spin-wave MF (mean-field) correction factor⁴ $\epsilon =$ 0.766. Furthermore, because the present work focuses on the saturation magnetization of the nanoparticles rather than their dynamical properties, a damping factor of $\alpha =$ 0.1 is used. In the simulation, we also add a factor of 1/2 because statistically, only those half particles (with odd number of Fe layers) in the [001] direction will contribute to one layer of uncompensated Fe atoms, whereas for those with even number of layers, the magnetic moments of Fe atoms are canceled each other. The simulated values of saturation magnetization with various thicknesses are given in Table S1.

Fig. S1 Schematic representation of the α -Fe₂O₃ unit-cell along different axes at the temperature below the Morin transition.⁵ Fe atoms are blue balls, and sublattice magnetic moments are red arrows (not to scale).

Table S1 VAMPIRE program simulated values of saturation magnetization with various thickness

Sample	{001}-3 nm	{001}-4 nm	{001}-5 nm	{001}-6 nm	{001}-7 nm	{001}-8 nm
Ms (emu/g)	13.46	10.29	8.33	7.00	6.03	5.30

S3: SEM images of {001} samples

Fig. S2 SEM images of the 5 {001} samples listed in Table 1. (a) {001}-I; (b) {001}-

II; (c) {001}-III; (d) {001}-IV; and (e) {001}-V.

Fig. S3 The SEM images and thickness distribution of nanoplates images of the 5 {001} samples. (a) {001}-I; (b) {001}-II; (c) {001}-III; (d) {001}-IV; and (e) {001}-

V.

Fig. S1 shows the typical SEM images of the corresponding {001} samples. It can be seen that these samples are mainly composed by hexagonal-shaped nanoplates. Fig. S2 exhibits the cross sections of these samples. The average thicknesses of these {001} samples are 8 nm, 7.5 nm, 6 nm, 4 nm and 3 nm, for {001}-I, {001}-II, {001}-II, {001}-II, {001}-II, {001}-IV and {001}-V, respectively. We emphasize that although the thickness of the {001} samples deduced form the SEM images could have some minor errors (because it is hardly to get a cross section image of nanoplates from TEM image), the relationship between the thickness and magnetism is qualitatively meaningful.

S4: ⁵⁷Fe Mössbauer spectra of {001} and {012} samples.

To inverstigate the chemical environment of Fe³⁺ and the magnetic interaction, the 57 Fe Mössbauer spectra of the {001}-III and {012} sample were recorded at 300 K and shown in Fig. S3. The spectrum of the {012} sample can be deconvoluted into two spectra, corresponding to the surface disordered Fe³⁺(paramagnetic singlet) and the bulk AFM (sextet), respectively. In contrast, the spectrum of {001}-III can be fitted with one singlet and three sextet, corresponding to the surface disordered Fe³⁺(paramagnetic singlet), the AFM, the surface FM and the interaction between the surface FM and the adjacent AFM, respectively. The fitted value of the ⁵⁷Fe Mössbauer spectra are given in Table SII.

Fig. S4 ⁵⁷Fe Mössbauer spectra meausred at 300 K for α -Fe₂O₃ (a) {001}-III, and (b) {012} sample.

Sample	Fitted	Isomer shift	Quadrupole	splitting	Hyperfine field	Percentage [%]		
	spectrum	[mm.s ⁻¹]	[mm.s ⁻¹]		[kOe]			
{001}-III	Singlet1	0.480	/		/	40.1		
	Sextet1	0.327	0.007		505.0	24.1		
	Sextet2	0.340	-0.011		480.1	18.2		
	Sextet3	0.393	-0.025		438.5	17.6.		
{012}	Singlet	0.350	/		/	22.4		
	Sextet	0.380	-0.113		518.8	77.6		

Table S2. Fitted Mössbauer parameters

S5: Reported values of saturation magnetization for α-Fe₂O₃

Table S3. Reported values of	f saturation magnetization and	d coercive field for α -Fe ₂ O ₃ .
------------------------------	--------------------------------	---

Crystal facet	M _s	H_c [Oe]	Temperature	Size	Ref.
(shape)	[emu g ⁻¹]		[K]	[nm]	
{001}-V	14.14	20	300	80*80	This work
{012}	0.85	120	300	30	This work
{012}	0.25	950	300	200	6
{104}	0.48	2.05	300	60	7
{101}	0.05	4986	300	300	8
{101}/{111}	0.04	6512	300	300	8
Spherical	0.45	549	300	60	7

Nanodisc	0.41	214	300	140	9
Cubic	0.24	Not given	300	200	6
Thorhombic	0.6	314	300	300	10
Nanorod	0.55	65	300	50×600	11
Irregular shape	0.6	20	300	40	11
Nanoparticle	6	Not given	300	3-8 nm	12
3D nanoparticle	8.94	Not given	303	20-50	13
2D nanosheets	3-4	Not given	200	Not given	14
{110}		Not given	500	Not given	
Nanoparticle	21	20	300	below 5 nm	15
Particle	12.2	95	300	25	16
Thin Films	12	320	300	75-80	17
Thin Films	470 emu/cm ³	Not given	300	1 µm	18
Thin Films	3.3	Not given	300	10-50 nm	19

S6: Low temperature and room temperature hysteresis loops

The magnetic hysteresis loop at a low temperature (50 K) was measured and shown in Fig. S5. The hysteresis loops of {001}-III and {001}-V samples were measured at a low temperature of 50 K. Both saturation magnetization Ms and coercive field Hc increase at 50 K.

Fig. S5 Magnetization (M) versus magnetic field (H) curves for the $\{001\}$ -III and $\{001\}$ -V samples measured at 300 K and 50 K, with the enlarged M-H curves with ± 300 Oe shown in the insets.

S7: Curie temperature calculation

We use the Hinzke-Nowak Monte Carlo algorithm, using 20000 equilibration steps and 20000 averaging steps, resulting in the calculated temperature-dependent magnetization curves for α -Fe₂O₃ shown in Fig. S5. The Curie temperature is calculated to be 675 K.

Fig. S6 Calculated temperature-dependent magnetization for the α -Fe2O3 {001}-IV sample.

S8: The comparsion in ZFC/FC behavior.

 Table S4. The composition, moprology, ZFC and FC characteristic and mechanism

Composition, size and moprology	External field	ZFC/FC	ZFC peaks	Explanations	Ref.
α -Fe ₂ O ₃ nanorods, 25 nm (S600)	1000 Oe	Overlap	T _m =224 K	Transition from SPM to spin glass state	20
Porous α-Fe ₂ O ₃ /Al nanocomposite, 40 nm	100 Oe	$T_i > 350$ K; T_B = 305 K	Borad peak ~305 K	Morin transition was suppressed by porous structure	21

of previous report and this work

	10 kOe	Overlap	T _m = 225 K	-			
α-Fe ₂ O ₃ {001}-nanoplates 60*60*6 nm.	1000 Oe	T _i = 240 K	T _m =240 K; T _B =110 K	Transition from FM to Morin state to SPM	This		This
α -Fe ₂ O ₃ {012}-nanocube		Overlap	T _m =220 K	Transition from WFM to FM	work		

S9: Reproducible morphology and magnetic properties of samples.

In order to minimize the experimental deviations, we prepared more than 5 samples for each {001} sample and then characterize its morphology and magnetism properties. Fig. S7 shows the typical SEM, TEM, and M-H properties of {001}-I', {001}-II', and {001}-III' from the different batches of products. It can be seen there are only negligible differences between Fig. S7 and Fig. 1 in the main text. By doing this, we believe these results are reproducible.

Fig. S7 SEM image, TEM image, SAED pattern and hysteresis loop of

 $\{001\}$ -I' sample (a-d), $\{001\}$ -II' sample (e-h) and $\{001\}$ -III' sample (i-

1).

References

- 1. X. Zhou, J. Lan, G. Liu, K. Deng, Y. Yang, G. Nie, J. Yu and L. Zhi, *Angew Chem Int Ed Engl*, 2012, **51**, 178-182.
- 2. M. Tadic, M. Panjan, V. Damnjanovic and I. Milosevic, Appl. Surf. Sci., 2014, 320, 183-187.
- 3. A. H. Morrish, *Canted Antiferromagnetism: Hematite*, Canted Antiferromagnetism: Hematite, 1995.
- 4. D. A. Garanin, *Physical Review B*, 1996, **53**, 11593-11605.
- 5. H. Jani, J.-C. Lin, J. Chen, J. Harrison and F. Maccherozzi, *Nature*, 2021, **590**, 74-79.
- 6. R. Liu, Y. Jiang, H. Fan, Q. Lu, W. Du and F. Gao, Chem. Eur. J., 2012, 18, 8957-8963.
- 7. Z. Liu, B. Lv, D. Wu, Y. Sun and Y. Xu, *Particuology*, 2013, 11, 327-333.
- 8. B. Lv, Z. Liu, H. Tian, Y. Xu, D. Wu and Y. Sun, Adv. Funct. Mater., 2010, 20, 3987-3996.
- L. Bao, H. Yang, X. Wang, F. Zhang, R. Shi, B. Liu, L. Wang and H. Zhao, J. Cryst. Growth, 2011, 328, 62-69.
- 10. W. Wu, S. Yang, J. Pan, L. Sun, J. Zhou, Z. Dai, X. Xiao, H. Zhang and C. Jiang, *CrystEngComm*, 2014, **16**, 5566-5572.
- 11. J. Lian, X. Duan, J. Ma, P. Peng, T. Kim and W. Zheng, ACS Nano, 2009, 3, 3749-3761.
- L. Kopanja, I. Milosevic, M. Panjan, V. Damnjanovic and M. Tadic, Appl. Surf. Sci., 2016, 362, 380-386.
- 13. Y. Sui, F. Lu, X. Liu, Y. Zhang, X. Sun and C. Liu, Phys. Lett. A, 2021, 408, 127488.
- J. Mohapatra, A. Ramos, J. Elkins, J. Beatty, M. Xing, D. Singh, E. C. La Plante and J. Ping Liu, Appl. Phys. Lett., 2021, 118, 183102.
- K. V. Manukyan, Y.-S. Chen, S. Rouvimov, P. Li, X. Li, S. Dong, X. Liu, J. K. Furdyna, A. Orlov, G. H. Bernstein, W. Porod, S. Roslyakov and A. S. Mukasyan, J. Phys. Chem. C, 2014, 118, 16264-16271.
- J. Wu, S. Mao, Z.-G. Ye, Z. Xie and L. Zheng, ACS Appl. Mater. Interfaces, 2010, 2, 1561-1564.
- S. Robbennolt, A. Nicolenco, P. Mercier Fernandez, S. Auffret, V. Baltz, E. Pellicer, E. Menéndez and J. Sort, ACS Appl. Mater. Interfaces, 2019, 11, 37338-37346.
- 18. A. Akbar, S. Riaz, M. Bashir and S. Naseem, IEEE Trans. Magn., 2014, 50, 1-4.
- F. F. H. Aragón, J. D. Ardisson, J. C. R. Aquino, I. Gonzalez, W. A. A. Macedo, J. A. H. Coaquira, J. Mantilla, S. W. da Silva and P. C. Morais, Thin Solid Films, 2016, 607, 50-54.
- M. Tadic, M. Panjan, Y. Lalatone, I. Milosevic, B. V. Tadic and J. Lazovic, Adv. Powder Technol, 2022, 33, 103847.
- M. Tadic, M. Panjan, B. V. Tadic, S. Kralj and J. Lazovic, Ceram. Int., 2022, 48, 10004-10014.