Designing for dopability in semiconducting AgInTe₂: Supporting Information

Vanessa Meschke,[†] Lídia Carvalho Gomes,[‡] Jesse M. Adamczyk,[†] Kamil M.

Ciesielski,[†] Caitlin M. Crawford,[†] Haley Vinton,[¶] Elif Ertekin,[‡] and Eric S.

Toberer*,†

†Department of Physics, Golden, CO 80401

Department of Mechanical Science and Engineering, Champaign, Illinois 61820 (Department of Mathematics, Golden, CO 80401

E-mail: etoberer@mines.edu

1 Experimental Determination of Phase Diagram

1.1 Region AI1: AgInTe₂, Ag, and Ag₃In

Figure S1 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{1.09}In_{0.98}Te_{1.93}$ showing dark regions of Ag_3In and light regions of elemental Ag in a matrix of AgInTe₂.

Figure S2 Powder XRD patterns for a nominal stoichiometry of $Ag_{1.09}In_{0.98}Te_{1.93}$ mostly showing the powder XRD pattern for AgInTe₂ with very slight impurity phases.

1.2 Region AI2: AgInTe₂, Ag₃In, and InTe

Figure S3 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of AgInTe_{1.96} showing dark regions of Ag₃In and light regions of InTe in a matrix of AgInTe₂.

Figure S4 Powder XRD pattern for a nominal stoichiometry of $AgInTe_{1.96}$ mostly showing the powder XRD pattern for $AgInTe_2$ with very slight impurity phases.

1.3 Region IT1: AgInTe₂, AgIn₅Te₈, and InTe

Figure S5 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{0.6}In_{1.32}Te_{2.08}$ showing lighter regions of InTe in a matrix composed of 20% Ag, 30% In, and 50% Te, consistent with a solid solution made of AgInTe₂ and AgIn₅Te₈.

Figure S6 Powder XRD pattern for a nominal stoichiometry of $Ag_{0.6}In_{1.32}Te_{2.08}$ largely showing AgInTe₂ and InTe.

1.4 Region IT2: AgInTe₂, AgIn₅Te₈, and Te

Figure S7 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{0.98}InTe_2$ showing a matrix composed of 20% Ag, 30% In, and 50% Te, consistent with a solid solution made of AgInTe₂ and AgIn₅Te₈ with some faint light spots of elemental Te.

Figure S8 Powder XRD pattern for a nominal stoichiometry of Ag_{0.98}InTe₂ largely showing AgInTe₂.

1.5 Region AT1: AgInTe₂, Te, and AgTe

Figure S9 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{1.24}In_{0.4}Te_{2.36}$ showing a small region of AgTe in a matrix of AgInTe₂.

Figure S10 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $AgIn_{0.98}Te_2$ showing a small region of Te in a matrix of $AgInTe_2$.

Figure S11 Powder XRD pattern for a nominal stoichiometry of AgIn_{0.98}Te₂ largely showing AgInTe₂.

1.6 Region AT2: AgInTe₂, Ag₂Te, and AgTe

Figure S12 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{1.6}In_{0.6}Te_{1.8}$ showing small, very bright regions of AgTe and larger, slightly darker regions of Ag_2Te in a matrix of AgInTe₂.

Figure S13 Powder XRD pattern for a nominal stoichiometry of Ag_{1.6}In_{0.6}Te_{1.8} largely showing AgInTe₂.

1.7 Region AT3: AgInTe₂, Ag₂Te, and Ag

Figure S14 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{1.11}In_{0.95}Te_{1.94}$ showing elemental Ag as the brightest, small dots and AgTe as the larger, slightly darker regions in a matrix of AgInTe₂.

Figure S15 Powder XRD pattern for a nominal stoichiometry of $Ag_{1.11}In_{0.95}Te_{1.94}$ largely showing AgInTe₂.

2 Structural Analysis of Doped Samples

2.1 AI2 + Ge

Figure S16 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of AgInTe_{1.96}Ge_{0.02} showing a matrix of AgInTe₂ with up to 6% Ge incorporated. Brighter spots have a composition of 22% Ag, 28% In, 33% Te, and 17% Ge according to EDS.

Figure S17 Powder XRD pattern for a nominal stoichiometry of AgInTe $_{1.96}$ Ge $_{0.02}$ largely showing AgInTe $_2$.

2.2 AI2 + Zn

Figure S18 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of AgInTe_{1.96}Zn_{0.02} showing Ag₃In as the brighter dots in a matrix of slightly silver-deficient AgInTe₂ with approximately 3% Zn incorporated.

Figure S19 Powder XRD pattern for a nominal stoichiometry of AgInTe_{1.96}Zn_{0.02} largely showing AgInTe₂.

2.3 IT2 + Ge

Figure S20 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{0.98}InTe_2Ge_{0.02}$ showing a matrix of AgInTe₂ with approximately 1.5% Ge incorporated. Bright spots are Ge-deficient GeTe with Ag and In incorporated.

Figure S21 Powder XRD pattern for a nominal stoichiometry of $Ag_{0.98}InTe_2Ge_{0.02}$ largely showing AgInTe₂.

2.4 IT2 + Zn

Figure S22 (a) 1000x and (b) 5000x magnification for a nominal stoichiometry of $Ag_{0.98}InTe_2Zn_{0.02}$ showing a matrix of AgInTe₂ with approximately 1.5% Zn incorporated.

Figure S23 Powder XRD pattern for a nominal stoichiometry of $Ag_{0.98}InTe_2Zn_{0.02}$ largely showing AgInTe₂.

3 Defect Diagrams

The defect diagrams for each region of chemical potential space were generated in addition to the Brouwer diagrams shown in the manuscript. For each of the numbered regions of composition space (or points in chemical potential space), the defect diagrams in Figure S24 were computed using the same methods as discussed in the Methods section of the main paper.

Figure S24 Defect diagrams for each region of chemical potential space. The equilibrium Fermi level is shown by the dotted vertical line.

4 Speed of Sound

Table S1 Experimentally measured speed of sound for samples presented in the main body of this work. Samples were measured at room temperature. Speed of sound was not measurable for sample IT2.

Compound	Shear SOS (m/s)	Longitudinal SOS (m/s)
AI2	1528	3165
IT2	_	_
AI2 + Ge	1446	2882
IT2 + Ge	1443	2894
AI2 + Zn	1393	2705
IT2 + Zn	1496	3079
Average CuInTe ₂	1896	3595

5 Equilibrium Fermi Level Positions

Table S2 Equilibrium position of the Fermi level for each point in chemical potential space at 300K and 723K for defect concentrations set by the synthesis temperature of 723K.

Region	E _F @ 300K (eV)	E _F @ 723K (eV)	
AI1	0.11	0.36	
AI2	0.13	0.39	
IT1	0.11	0.35	
IT2	0.0	0.07	
AT1	0.05	0.21	
AT2	0.06	0.24	
AT3	0.11	0.35	

6 Equilibrium Chemical Potential Points

Table S3 Equilibrium Fermi level points for each invariant point in equilibrium with $AgInTe_2$. All points are in equilibrium with $AgInTe_2$ and had $AgInTe_2$ experimentally observed, so they are not included in the list of predicted or observed phases for brevity.

Region	$\Delta \mu_{\mathrm{Ag}}$ (eV)	$\Delta \mu_{ m In}$ (eV)	$\Delta \mu_{\mathrm{Te}}$ (eV)	Predicted	Observed
				Phases	Phases
AI1	0	-0.278	-0.7	Ag, Ag ₉ In ₄	Ag, Ag ₃ In
AI2	-0.086	-0.085	-0.753	Ag ₉ In ₄ , In ₄ Te ₃	Ag ₃ In, InTe
IT1 -0.	-0.282	-0.202	-0.597	In ₄ Te ₃ ,	ΙηΤο ΔαΙη-Τος
	-0.202			AgIn ₅ Te ₈	mile, rigins ieg
IT2	-0.58	-1.097	0	AgIn ₅ Te ₈ , Te	AgIn ₅ Te ₈ , Te
AT1	-0.271	-1.406	0	Te, AgTe	Te, AgTe
AT2	-0.22	-1.355	-0.051	AgTe, Ag ₂ Te	AgTe, Ag ₂ Te
AT3	0	-0.695	-0.491	Ag ₂ Te, Ag	Ag ₂ Te, Ag

7 High Temperature Carrier Concentration

Figure S25 Carrier and defect concentrations through chemical potential space at 723K for defect concentrations set by a synthesis temperature of 723K.

8 AT1: Seebeck and Resistivity

Figure S26 Seebeck and resistivity measurements of samples AT1 and AT1 doped with Zn.