Glassy and liquid Sb₂S₃: insight into the structure and dynamics of a promising functional material

Mohammad Kassem,^a Chris J. Benmore,^b Andrey Tverjanovich,^c Takeshi Usuki,^d Maxim Khomenko,^e Daniele Fontanari,^a Anton Sokolov,^a Koji Ohara,^f Maria Bokova,^a Shinji Kohara,^g and Eugene Bychkov^{*a}

^a Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France. E-mail: <u>bychkov@univ-littoral.fr</u>

^b X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States

- ^c Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
- ^d Faculty of Science, Yamagata University, Yamagata 990-8560, Japan

^e ILIT RAS–Branch of the FSRC "Crystallography and Photonics" RAS, 140700 Shatura, Moscow Region, Russia f Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

^g Quantum Beam Field, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan

Electronic supplementary information

Fig. S1 Raw diffraction patterns of nanocrystalline and glassy Sb₂S₃.

Fig. S2 Raman spectrum of amorphous antimony.

Fig. S3 Evolution of Raman spectra for Sb_2S_3 as a function of temperature.

Fig. S4 DFT Raman spectra of size-limited clusters.

Fig. S5 S-Sb-S bond angle distributions for DFT-optimized clusters.

Fig. S6 Distributions of Sb-S interatomic distances in DFT-optimized clusters.

Fig. S7 High-energy X-ray diffraction data for glassy and liquid As₂S₃.

Fig. S8 Comparison of FPMD modeling with standard PBE and hybrid PBE0 functionals.

Fig. S9 FPMD modeling of glassy As₂S₃ under high-pressure.

Fig. S10 Fitting Sb-S partials with asymmetric functions.

Fig. S11 Coordination distributions of sulfur and antimony.

Fig. S12 Bond angle distributions in glassy and liquid Sb₂S₃.

Fig. S13 FPMD partial pair-distribution functions $g_{PnS}(r)$ for g-Pn₂S₃, Pn = As, Sb, and experimental $g_X(r)$ for g-As₂S₃ at ambient pressure and 6.3 GPa.

Fig. S14 Derived Sb and S diffusion coefficients plotted on Arrhenius scale.

Fig. S15 FPMD estimation of the SC-M transition temperature T_{SC-M} for liquid Sb₂S₃.

Fig. S1 Raw diffraction patterns of (a,b) nanocrystalline nc-Sb₂S₃ and (c,d) glassy g-Sb₂S₃ including (a,c) two-dimensional images of the flat high-energy X-ray detectors and (b,d) their radial averaging. A PerkinElmer model 1621 X-ray area detector (2048 × 2048 pixels and a pixel size of 200 × 200 μ m²) was used for nc-Sb₂S₃, and a Varex area detector (2880 × 2880 pixels and a pixel size of 150 × 150 μ m²) for g-Sb₂S₃.

Fig. S2 Raman spectrum of amorphous antimony *a*-Sb thin film^{s1} and DFT replica of $SbSb_3H_3$ pyramidal cluster, shown in the insert. The terminal hydrogen species are omitted, and H-related vibrations are removed from the DFT spectrum.

Fig. S3 Evolution of Raman spectra for Sb_2S_3 as a function of temperature: (a) glassy antimony sesquisulfide at room temperature, (b) crystalline Sb_2S_3 at 523 K, (c) partially melted Sb_2S_3 at 833 K, (d) liquid Sb_2S_3 at 873 K. The inserts show microscopic images of the sample at indicated temperatures. The image in (c) represents Sb_2S_3 just before melting.

Fig. S4 DFT Raman spectra of size-limited clusters: (a) SbS_3H_3 , (b) corner-sharing dimer $CS-Sb_2S_5H_4$, (c) edge-sharing dimer $ES-Sb_2S_4H_2$ in chair (the solid line) and boat (the dashed line) conformations, (d) $Sb_3S_6H_3$ ring, (e) $CS-Sb_2S_6H_4$ dimer with S-S homopolar bond, (f) $Sb_6S_{12}H_6$ ring, in comparison with experimental Raman spectrum of glassy Sb_2S_3 (highlighted in yellow for all panels). The DFT-optimized clusters are shown in the inserts. The terminal hydrogen species are omitted, and H-related vibrations are removed from the spectra.

Fig. S5 S-Sb-S bond angle distributions $B(\theta)$ for DFT-optimized clusters: (a) CS-Sb₂S₅H₄, (b) ES-Sb₂S₄H₂ in chair conformation, (c) Sb₃S₆H₃ ring, (d) Sb₆S₁₂H₆ ring, (e) Sb₁₂S₁₆ and (f) Sb₁₂S₁₈H₁₂ entities, originating from modified ribbons (Sb₄S₆)_∞,^{s2} in comparison with $B_{SSbS}(\theta)$, derived using first-principles molecular dynamics simulation of g-Sb₂S₃ and highlighted in yellow for all panels.

Fig. S6 Distributions of Sb-S interatomic distances in DFT-optimized clusters: (a) $CS-Sb_2S_5H_4$, (b) ES- $Sb_2S_4H_2$ in chair conformation, (c) $Sb_3S_6H_3$ ring, (d) $Sb_6S_{12}H_6$ ring, (e) $Sb_{12}S_{16}$ and (f) $Sb_{12}S_{18}H_{12}$ entities, originating from modified ribbons (Sb_4S_6)_∞, in comparison with derived Sb-S nearest neighbor distances in glassy Sb_2S_3 , obtained using high-energy X-ray diffraction and highlighted in light green for all panels.

Fig. S7 High-energy X-ray diffraction data in *Q*-space for glassy and liquid As_2S_3 : (a) isolated first sharp diffraction peak (FSDP) and (b) X-ray structure factor $S_X(Q)$ over a limited *Q*-range as a function of temperature between 295 and 873 K.

Fig. S8 Comparison of FPMD modeling with standard PBE and hybrid PBE0 functionals: (a) partial Sb-S pair-distribution functions $g_{Sb-S}(r)$, (b) experimental X-ray pair-distribution function $g_X(r)$ and their FPMD replicas. The dark blue line corresponds to PBE0, the pink solid line to PBE in the both panels; the experimental data are shown by the light blue circles.

Fig. S9 FPMD modeling of glassy As_2S_3 under high-pressure^{s3} using hybrid functional GGA/PBE0 (our preliminary results): (a) As-S and As-S partials structure factors $S_{ij}(Q)$ at ambient pressure, (b) $S_{AsAs}(Q)$ and $S_{AsS}(Q)$ at 4 GPa. The FSDP *Q*-range is emphasized by the light-green ellipse.

Fig. S10 Fitting Sb-S partials $T_{Sb-S}(r)$ with asymmetric functions at (a) 1150 K, and (b) 300 K; the Sb-S NN peaks are light-colored, the Sb-S second neighbor peaks are dark colored; the derived coordination numbers are also indicated; interatomic distances as a function of temperature: (c) Sb-S second neighbors, (d) Sb-S nearest neighbors; (e) temperature dependence of Sb-S correlation width $w_{Sb-S}(T)$.

Fig. S11 Coordination distributions of (a) sulfur and (b) antimony at 300 K and 1150 K, derived from the FPMD simulations of Sb_2S_3 using hybrid functional GGA/PBE0.

Fig. S12 Bond angle distributions (a) $B_{SSbS}(\theta)$ and (b) $B_{SbSSb}(\theta)$ in glassy and liquid Sb₂S₃ at 300 K and 1150 K, respectively.

Fig. S13 (a) FPMD partial pair-distribution functions $g_{PnS}(r)$ for g-Pn₂S₃, Pn = As, Sb; (b) experimental $g_X(r)$ for g-As₂S₃ at ambient pressure and 6.3 GPa;^{s3} broader NN and 2ndN peaks of $g_X(r)$ are related to a smaller accessible Q-range in a diamond anvil cell experiment, $Q_{max} = 16 \text{ Å}^{-1}$ instead of usual 25-30 Å⁻¹.

Fig. S14 Derived diffusion coefficients $D_{Sb}(T)$ and $D_S(T)$ plotted on Arrhenius scale. The effective activation energies in the vicinity of 850 K (1.02 eV) and 1150 K (0.37 eV) are also shown.

Fig. S15 FPMD estimation of the SC-M transition temperature T_{SC-M} for liquid Sb₂S₃; (a) bandgap E_g as a function of temperature; (b) atomic diffusion activation energy E_d as a function of temperature. The average thermal energy k_BT is also shown in (b). The effective diffusion coefficient $D_{eff} = 0.4D_{Sb} + 0.6D_S$ was taken for these calculations.

Usually, the electronic conductivity increases and bandgap decreases going down on the Periodic Table. Vitreous, crystalline and liquid As_2S_3 and Sb_2S_3 are consistent with this trend. The room temperature conductivity of g-Sb₂S₃ is higher by three orders of magnitude compared to arsenic sesquisulfide, and the difference in E_g is about $\Delta E_g \approx 0.3$ eV. A semiconductor – metal (SC–M) transition is suggested to occur in these two high-*T* liquids. Using the extrapolation of the optical absorption data,^{s4} the SC–M transition is expected at $T_{SC-M} = 1600\pm150$ K for *L*-As₂S₃^{s5} and between 1250 and 1550 K for its antimony counterpart. The last estimation was based on FPMD modeling of the bandgap as a function of temperature or derived from the computed atomic diffusion coefficients, Fig. S15.

The bandgap calculations using the hybrid functional GGA/PBE0 in the metallic limit yields a significant uncertainty in $T_{SC-M} = 1550\pm120$ K. As expected, the modeling with the standard functional GGA/PBE reveals a metallic liquid at lower temperature, 1250 ± 75 K. The derived T_{SC-M} values seem to be the two extremes for estimation of a SC-M transition using the electronic properties. Another alternative gives the atomic dynamics suggesting that the diffusion activation energy E_d in the metallic fluid appears to be comparable with the average thermal energy, $E_d \approx k_B T$. This alternative yields $T_{SC-M} = 1330\pm100$ K, which corresponds to a change in the slope of E_g (PBE0), Fig. S15(a). Finally, liquid Sb₂S₃ exhibits the metallic conductivity above approximately 1300-1500 K.^{s6}

Additional references

- s1 J. S. Lannin, Raman scattering properties of amorphous As and Sb, *Phys. Rev. B*, 1977, **15**, 3863–3871.
- s2 P. Bayliss and W. Nowacki, Refinement of the crystal structure of stibnite, Sb₂S₃, *Z. Kristallogr.*, 1972, **135**, 308–315.
- s3 E. Soignard, O. B. Tsiok, A. S. Tverjanovich, A. Bytchkov, A. Sokolov, V. V. Brazhkin, C. J. Benmore, and E. Bychkov, Pressure-driven chemical disorder in glassy As₂S₃ up to 14.7 GPa, postdensification effects, and applications in materials design, *J. Phys. Chem. B*, 2020, **124**, 430–442.
- s4 S. Hosokawa, Y. Sakaguchi, H. Hiasa, and K. Tamura, Optical absorption spectra of liquid As₂S₃ and As₂Se₃ over a wide temperature range, *J. Phys.: Condens. Matter*, 1991, **3**, 6673–6677.
- s5 S. Wei, P. Lucas and C. A. Angell, Phase-change materials: the view from the liquid phase and the metallicity parameter, *MRC Bull.*, 2019, **44**, 691–698.
- s6 V. A. Alekseev, A. A. Andreev and M. V. Sadovskii, Semiconductor-metal transition in liquid semiconductors, *Sov. Phys. Usp.*, 1980, **23**, 551–575.