Supporting Information for

Polar Solvent Free Room Temperature Synthesis of CsPbX₃ (X =

Br, Cl) Perovskite Nanocubes

C. Meric Guvenc^a, Askin Kocabas^b, and Sinan Balci^{c*}

^aDepartment of Materials Science and Engineering, Izmir Institute of Technology, 35430 Izmir,

Turkey

^bDepartment of Physics, Koc University, Istanbul, 34450, Turkey

^cDepartment of Photonics, Izmir Institute of Technology, 35430 Izmir, Turkey

*E-mail: sinanbalci@iyte.edu.tr

Figure S1. XRD pattern shows the formation of both $CsPbBr_3$ and Cs_4PbBr_6 phases when the molar ratio of Cs/Pb is 2.

Figure S2. In-situ absorption measurement of the synthesis of CsPbBr₃ nanocrystals without addition of GA-oleate (a) in hexane and (b) in toluene.

Figure S3. Comparison of the XRD patterns of the GA-assisted synthesized CsPbBr₃ nanocubes and reference XRD pattern.¹

Figure S4. The PLQY measurements of the samples. Measurements were done using an integrating sphere.

Figure S5. Absorption spectra of the halide exchange reaction from CsPbBr₃ to CsPbI₃.

Figure S6. On the left-hand panel, absorption and PL spectra of the freshly prepared and six months old CsPbBr3 nanocubes stored at 2- 8 °C are shown. On the right-hand panel, digital images of the six months old CsPbX3 (X = Cl, Br) nanocubes are provided.

Table S1. Comparison of average size and optical properties of the perovskite nanocrystals

 synthesized at room temperature.

	PL (nm)	PL FWHM	Average Particle Size (nm)	PLQY (%)	$ au_{avg}(ns)$
MAPbBr ₃ ²	515	21 nm (96 meV)	3.3	50-70	13.54
CsPbBr ₃ ³	517- 501 depend on rection duration	16- 19 nm	13.6-6.8 depend on rection duration	Above 80	-
CsPbBr ₃ (RT synthesis only) ⁴	468	230 meV	3.4	-	-
CsPbBr ₃ ⁵	511-515	18- 20 nm	12.7 nm	80-85	11.4
CsPbBr ₃ ⁶	515	18 nm	10 nm	93	8.63
CsPbBr ₃ (Our method)	508	21 nm	14 nm	85	18.98

REFERENCES

- Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. *Cryst Growth Des* 2013, 13 (7), 2722–2727. https://doi.org/10.1021/cg400645t.
- (2) Zhang, F.; Zhong, H.; Chen, C.; Wu, X.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH₃ NH₃ PbX₃ (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9 (4), 4533–4542. https://doi.org/10.1021/acsnano.5b01154.
- Brown, A. A. M.; Vashishtha, P.; Hooper, T. J. N.; Ng, Y. F.; Nutan, G. v.; Fang, Y.; Giovanni, D.; Tey, J. N.; Jiang, L.; Damodaran, B.; Sum, T. C.; Pu, S. H.; Mhaisalkar, S. G.; Mathews, N. Precise Control of CsPbBr ₃ Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. *Chemistry of Materials* **2021**, *33* (7), 2387–2397. https://doi.org/10.1021/acs.chemmater.0c04569.

- (4) Almeida, G.; Ashton, O. J.; Goldoni, L.; Maggioni, D.; Petralanda, U.; Mishra, N.; Akkerman, Q. A.; Infante, I.; Snaith, H. J.; Manna, L. The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystals. *J Am Chem Soc* 2018, *140* (44), 14878–14886. https://doi.org/10.1021/jacs.8b08978.
- (5) Wei, S.; Yang, Y.; Kang, X.; Wang, L.; Huang, L.; Pan, D. Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr ₃ Perovskite Nanocrystals. *Inorg Chem* 2017, 56 (5), 2596–2601. https://doi.org/10.1021/acs.inorgchem.6b02763.
- (6) Song, J.; Li, J.; Xu, L.; Li, J.; Zhang, F.; Han, B.; Shan, Q.; Zeng, H. Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs. *Advanced Materials* **2018**, *30* (30), 1800764. https://doi.org/10.1002/adma.201800764.