Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

On the factors affecting the response time of synaptic ion-gated transistors

Ramin Karimi Azari*a, Tian Lana, Clara Santato*a

^a Engineering Physics, Polytechnique Montreal, 2500 Ch. Polytechnique, H3T 1J4, Montreal,

QC, Canada

Corresponding authors: ramin.karimi@polymtl.ca, clara.santato@polymtl.ca, clara.santato@polymtl.ca)

Morphology and structure of the P3HT films

Figure S1 AFM height images of P3HT films with size: **a**) 5 μ m×5 μ m, **b**) 10 μ m×10 μ m, **c**) 20 μ m×20 μ m and **d**) XRD patterns of the P3HT films.

Transfer and output characteristics of IGTs at different V_{gs} scan rates

Figure S2 Transfer characteristics of [EMIM][TFSI]-gated P3HT transistors in the linear regime (V_{ds} = -0.2 V (3 cycles)) at V_{gs} scan rates of: **a**) 50 mVs⁻¹, **b**) 25 mVs⁻¹ and **c**) 5 mVs⁻¹. Output characteristics with V_{gs} = 0, -0.2, -0.4, -0.6, -0.8, -1 V with V_{ds} scan rates of: **d**) 50 mVs⁻¹, **e**) 25 mVs⁻¹, **f**) 5 mVs⁻¹.

We calculated the charge carrier density (ρ , cm²) and mobility (μ , cm²V⁻¹s⁻¹) in our P3HT channels from the transfer characteristics with V_{gs} sweeping rates of 5, 25, 50, and 100 mVs⁻¹ and V_{ds} = -0.2 V (Table S1).

We obtained the charge carrier density from the equation: $\rho = \frac{Q}{eA} = \frac{\int I_g dV_{gs}}{eAr_v}, \text{ where Q represents}$ the amount of charge accumulated during the forward scan in the transfer curve (resulting from the integration of I_{gs} with V_{gs}), e is the elementary charge, A is the interfaced area of the P3HT film, and the ionic media (4 mm×9 mm), and r_v is the scan rate of V_{gs}. ¹

$$\mu = \frac{L I_{ds}}{W Q V_{ds}}^2$$

The charge carrier mobility, μ , is obtained by WQV

The ON/OFF ratio, calculated from the transfer curves, is the ratio between I_{ds} in the ON state and I_{ds} in the OFF state (I_{on}/I_{off}), calculated for a fixed V_{gs} . The threshold voltage, V_{th} , was calculated using a linear extrapolation of the I_{ds} - V_{gs} curve, in the linear regime.³

Table S1 The values of threshold voltage and ON/OFF ratios of [EMIM][TFSI]-gated P3HT

V _{gs} scan rate	ON/OFF	Threshold	Mobility	Charge carrier
(mVs ⁻¹)	ratios	voltage (V)	$(cm^2V^{-1}s^{-1})$	density (cm ⁻²)
100	1.7×10^{3}	-0.47 ± 0.03	0.26 ± 0.08	$1.3{\times}10^{15}\pm0.5{\times}10^{15}$
50	2.6×10 ³	-0.46 ± 0.03	0.19 ± 0.06	$1.7{\times}10^{15}\pm0.5{\times}10^{15}$
25	3.1×10 ³	-0.45 ± 0.03	0.14 ± 0.04	$2.1{\times}10^{15}\pm0.5{\times}10^{15}$
5	5.8×10 ⁴	-0.44 ± 0.03	0.06 ± 0.01	$5.7{\times}10^{15}\pm0.8{\times}10^{15}$

transistors (V_{ds} = -0.2 V) at different V_{gs} scan rates:100, 50, 25, and 5 mVs⁻¹.

Importance of the V_{gs} sampling time on the measurement of the response time

Figure S3 Transient I_{ds} characteristics of [EMIM][TFSI]-gated P3HT transistors at different $V_{gs.}$ pulse sampling times: **a**) 1s, **b**) 250 ms, **c**) 100 ms, **d**) 50 ms, **e**) 10 ms in response to a single V_{gs} = -1 V pulse, with V_{ds} =-0.8 V; the duration of the $V_{gs.}$ pulse is 5 s.

Fitting parameters for exponential fitting curves

R-square, also known as the coefficient of determination, measures a model's goodness of fit. The closer the fit is to the data points, the closer R-square will be to the value of 1. We report fitting parameters for figures 3-5 in the tables below.

Table S2 R-square parameter values related to exponential fits used to estimate the response time of different numbers of V_{gs} pulses.

Number of V_{gs} pulses	5 pulses	10 pulses	25 pulses
R-square	0.92	0.91	0.91

Table S3 R-square parameter values related to exponential fits used to estimate the response time of different duration time of pulse.

Duration time of V_{gs} pulse	10 ms	100 ms	500 ms	1 s	5 s	9 s
R-square	0.99	0.94	0.92	0.91	0.92	0.93

Table S4 R-square parameter values related to exponential fits used to estimate the response time of different frequencies of V_{gs} pulses.

Frequency of V _{gs} pulses	1 Hz	5 Hz	10 Hz
R-square	0.92	0.94	0.96

Table S5 R-square parameter related to exponential fits used to estimate the response time of different V_{gs} pulse sampling times.

$\rm V_{gs}$ pulse sampling times	10 ms	25 ms	50 ms	100 ms	250 ms	500 ms	1 s
R-square (V _{ds} =-0.6)	0.95	0.94	0.99	0.99	1	1	1
R-square (V _{ds} =-0.8)	0.94	0.96	0.98	0.99	1	1	1

All R-square parameters are close to 1 and it shows a good fit between the exponential model and the associated decay curves.

References

- 1. J. Sayago, F. Soavi, Y. Sivalingam, F. Cicoira and C. Santato, *Journal of Materials Chemistry C*, 2014, **2**, 5690-5694.
- M. Zakrewsky, K. S. Lovejoy, T. L. Kern, T. E. Miller, V. Le, A. Nagy, A. M. Goumas, R. S. Iyer, R. E. Del Sesto and A. T. Koppisch, *Proceedings of the National Academy* of Sciences, 2014, 111, 13313-13318.
- 3. Y. Na and F. S. Kim, *Chemistry of Materials*, 2019, **31**, 4759-4768.