Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Polar 2D Hybrid Perovskite Crystals with Intrinsic Strong Linear

Dichroism for Polarization-Sensitive and Self-Powered Detection

Yaoyao Chen,^{a,b} Liwei Tang,^b Yi Liu,^b Tian Yang,^{a,b} Lina Hua,^{a,b} Xi Zeng,^b Junhua Luo^{b,c},

Zhihua Sun,^{a,b,c*}

- a. College of Chemistry, Fuzhou University, Fuzhou 350116, China
- b. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,
 Fuzhou, Fujian 350108, People's Republic of China

Figure S2. (a) Hydrogen-bonding N-H…I interactions between the organic BBA⁺ and inorganic perovskite frameworks. (b) Hydrogen-bonding N-H…I interactions between the organic MA⁺ and inorganic perovskite frameworks.

Figure S3. Photoresponsivity and detectivity of **1** under various incident-light power density at 520 nm. The responsivity is defined as $R = \frac{I_{light}}{P}$, where I_{light} is the photocurrent and P is the $D^* = \frac{R\sqrt{Af}}{i_n}$, where A is the effective incident light power.¹ The detectivity is defined as $D^* = \frac{R\sqrt{Af}}{i_n}$, where A is the effective illumination area of the photodetector, f is the electric bandwidth, and i_n is the noise current. The shot noise $(i_{n,s})$ is defined as $i_{n,s} = \sqrt{2qi_d/A}$, where i_d is the dark current, q is the absolute value of electron charge. If, as expected, the shot noise from the dark current is the major $D^* = \frac{R}{m}$

contribution, the detectivity can be expressed as

$$* = \frac{R}{\sqrt{2qi_d/A}}$$

[1] X. Gong, M. Tong, Y. Xia, W. Cai, J. Moon, Y. Cao, G. Yu, C. Shieh, B. Nilsson and A. Heeger, High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm, *Science*, 2009, **325**, 1665-1667.

[2] K. Yang, Z. Zhao, M. Liu, L. Niu, X. Zhao, G. Yuan, X. Ma and F. Zhang, Highly sensitive broadband photomultiplication type all-polymer photodetectors and their applications in optical pulse counting, *J. Mater. Chem. C*, 2022, **10**, 10888-10894.

Figure S4. Polarization-dependent photocurrents ($V_{\text{bias}} = 0 \text{ V}$, at 520 nm).

Figure S5. Powder X-ray diffraction patterns of **1** recorded on the sample after 1 day and 90 days, respectively.

Figure S6. Thermal analysis curve of 1, showing a thermal stability up to ~518 K.

Table S1. Crystal data and structure refinement of 1.				
Empirical formula	$C_{15}H_{24}Br_2I_7N_3Pb_2$			
Formula weight	1708.87			
Temperature/K	298			
Crystal system	monoclinic			
Space group	Cc			
a/Å	44.702(8)			
b/Å	8.9866(14)			
c/Å	8.8252(17)			
α/°	90			
β/°	97.362(7)			
γ/°	90			
Volume/ų	3516.1(11)			
Ζ	4			
$ ho_{calc}g/cm^3$	3.228			
µ/mm ⁻¹	17.992			
F(000)	2960.0			
Radiation	Μο Κα (λ = 0.71073)			
2θ range for data collection/°	4.624 to 50.05			
Index ranges	$-52 \le h \le 52, -10 \le k \le 10, -10 \le l \le 10$			
Reflections collected	14802			
Independent reflections	5999 [R _{int} = 0.0916, R _{sigma} = 0.1334]			
Data/restraints/parameters	5999/203/232			
Goodness-of-fit on F ²	1.091			
Final R indexes [$I >= 2\sigma(I)$]	$R_1 = 0.0933, wR_2 = 0.2016$			
Final R indexes [all data]	$R_1 = 0.1501, wR_2 = 0.2359$			

Table

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Pb2	17	3.104(7)	C2	C7	1.39(3)
Pb2	14	3.258(9)	C2	C3	1.41(3)
Pb2	16	3.238(8)	C7	C6	1.38(3)
Pb2	161	3.200(8)	C3	C4	1.40(2)
Pb2	15 ²	3.170(8)	C6	C5	1.39(3)
Pb2	15	3.176(8)	C4	C5	1.39(3)
14	Pb1	3.300(9)	C5	Br1	2.00(7)
16	Pb2 ³	3.200(8)	Br2	C12	1.538(19)
15	Pb2 ⁴	3.170(8)	C13	C14	1.40(3)
Pb1	12	3.138(7)	C13	C12	1.43(3)
Pb1	13	3.213(8)	C14	C9	1.42(3)
Pb1	13 ¹	3.214(7)	C12	C11	1.43(3)
Pb1	I1 ⁴	3.198(9)	C11	C10	1.40(3)
Pb1	11	3.170(8)	C10	C9	1.43(3)
13	Pb1 ³	3.214(7)	C9	C8	1.53(3)
11	Pb1 ²	3.198(9)	C8	N2	1.49(3)
N3	C1	1.50(2)	N1	C15	1.48(3)
C2	C1	1.70(2)			

 Table S2.
 Selected bond lengths of 1.

¹+X,1-Y,-1/2+Z; ²+X,2-Y,1/2+Z; ³+X,1-Y,1/2+Z; ⁴+X,2-Y,-1/2+Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
17	Pb2	14	174.2(2)	I1 ⁴	Pb1	13 ¹	91.8(3)
17	Pb2	16	86.8(2)	11	Pb1	13	90.7(2)
17	Pb2	16 ¹	92.3(2)	11	Pb1	13 ¹	178.7(3)
17	Pb2	15	96.6(3)	11	Pb1	11 ⁴	89.11(9)
17	Pb2	15 ²	91.0(2)	Pb1	13	Pb1 ³	158.9(3)
16 ¹	Pb2	14	85.6(2)	Pb1	11	Pb1 ²	160.6(3)
16	Pb2	14	87.8(2)	C7	C2	C1	124(4)
16 ¹	Pb2	16	87.96(9)	C7	C2	C3	121(4)
15	Pb2	14	88.8(2)	C3	C2	C1	114(3)
15 ²	Pb2	14	91.0(3)	N3	C1	C2	101(2)
15	Pb2	16	176.6(3)	C6	C7	C2	121(5)
15 ²	Pb2	16 ¹	176.4(3)	C4	C3	C2	116(4)
15	Pb2	16 ¹	91.6(3)	C7	C6	C5	114(6)
15 ²	Pb2	16	90.6(3)	C5	C4	C3	117(6)
15²	Pb2	15	89.64(9)	C6	C5	C4	126(6)
Pb2	14	Pb1	174.6(2)	C6	C5	Br1	118(4)
Pb2 ³	16	Pb2	159.7(3)	C4	C5	Br1	114(4)
Pb2 ⁴	15	Pb2	161.0(3)	C14	C13	C12	126(3)
12	Pb1	14	174.7(2)	C13	C14	C9	118(5)
12	Pb1	13	92.3(2)	C13	C12	Br2	118(3)
12	Pb1	13 ¹	86.7(2)	C13	C12	C11	106(2)
12	Pb1	11 ⁴	88.7(2)	C11	C12	Br2	136(4)
12	Pb1	11	94.2(2)	C10	C11	C12	125(3)
13	Pb1	14	88.1(2)	C11	C10	C9	123(3)
I3 ¹	Pb1	14	88.0(2)	C14	C9	C10	109(3)
13	Pb1	13 ¹	88.33(9)	C14	C9	C8	110(3)
I1 ⁴	Pb1	14	90.9(3)	C10	C9	C8	125(7)
11	Pb1	14	91.0(2)	N2	C8	C9	110(3)
I1 ⁴	Pb1	13	179.0(3)				

Table S3. Selected bond angles of 1.

¹+X,1-Y,-1/2+Z; ²+X,2-Y,1/2+Z; ³+X,1-Y,1/2+Z; ⁴+X,2-Y,-1/2+Z

D-H	d(D-H)	d(HA)	<dha< td=""><td>d(DA)</td><td>Α</td></dha<>	d(DA)	Α
N3-H3A	0.890	2.974	132.13	3.631	l3 [x, -y+1, z-1/2]
N3-H3A	0.890	3.287	113.80	3.736	l1 [x, y-1, z]
N3-H3B	0.890	3.073	172.39	3.957	l2 [x, -y+1, z+1/2]
N3-H3C	0.890	2.681	174.14	3.567	12
N2-H2A	0.890	3.122	134.57	3.800	I7 [x-1/2, y+1/2, z]
N2-H2A	0.890	3.240	132.55	3.898	l6 [x-1/2, -γ+3/2, z-1/2]
N2-H2C	0.890	2.583	172.30	3.468	I5 [x-1/2, y-1/2, z]
N1-H1C	0.890	3.191	145.99	3.960	l1 [x, -y+2, z+1/2]
N1-H1D	0.890	3.243	146.31	4.014	l4 [x, y, z+1]
N1-H1E	0.890	3.244	111.83	3.669	13

Table S4. Hydrogen bonds of 1.

_