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1. DOS Edge for Dopants
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Figure S1: Comparison of density-of-states for undoped and doped Hg2GeTe4 around band edges. Example
shown for Au- and Ga-doped Hg2GeTe4 supercell with the lowest acceptor and donor defects. Minimal
change in band edge shape indicates the validity of rigid band approximation.
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2. Defect diagram for Ag and Au under Hg-rich growth condition
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Figure S2: Defect diagram for Ag and Au-doped Hg2GeTe4 under Hg-rich growth condition.
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3. Dopant chemical potential and lowest energy defect

Table S1: Dopant chemical potential (∆µD, eV/atom) under two thermodynamic states (1 = Hg-rich/Ge-
rich and 2 = Hg-poor/Ge-rich). The lowest energy defect (∆HD,q, eV/defect) at a Fermi level EF = 0.24
eV is shown for all dopants. High chemical potential is not the sole factor in driving high energy defects
(i.e. Sb, Bi form defects about 10 times higher in energy than Cu defets, although Cu is more limited by its
chemical potential). *Cu2HgGeTe4 is known to form a full solid solution with Hg2GeTe4.

Dopant ∆µD, 1 ∆µD, 2 ∆HD,q Lowest energy defect Competing phase

Sb -0.10 -0.27 1.5 Sb+1
Ge Sb2Te3

Au -0.13 -0.35 0.4 Au−1
Hg1 AuTe2

Ag -0.19 -0.26 0.05 Ag−1
Hg2 AgTe

Bi -0.43 -0.60 0.9 Bi+3
i Bi2Te3

Cu -0.48 -0.56 0.1 Cu+1
i Cu2HgGeTe4*

Ga -0.97 -1.11 0.1 Ga+1
Hg1 HgGa2Te4

In -1.01 -1.15 0.2 In+1
Hg1 HgIn2Te4

Zn -1.12 -1.21 0.1 Zn+2
i ZnTe

Li -1.99 -2.05 0.2 Li−1
Hg2 Li2Te

Sc -2.54 -2.65 0.1 Sc+1
Hg1 ScTe

Mg -2.83 -2.94 1.1 Mg+2
i MgTe

Br -3.20 -3.10 2.6 Br+1
Te Hg3Br4Te

Na -3.47 -3.81 1.9 Na−1
Hg2 NaTe3

I -3.94 -3.80 3.9 I+1
Te Hg3I2Te2

La -4.11 -4.26 1.1 La+1
Hg2 La3Te4

Y -4.93 -5.10 1.3 Y+1
Hg2 Y2Te3
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3. Doping efficiency for Au, Ag, Li, Cu, Sc, Zn, In, Ga

Table S2: Doping efficiency (η)

Growth conditions

Dopant Hg-poor/Ge-rich Hg-rich/Ge-rich

Cu 49% 49%

Li 50% 48%

Ag 49% 49%

Au 61% 85%

In 99% 87%

Zn 0.030% 0.036%

Sc 95% 71%

Ga 52% 51%

Doping efficiency for the eight candidate dopants of the main study. Calculations are discussed in Section
1.2.1 Doping Efficiency. The top four rows (Cu, Li, Ag, and Au) show efficiency for p-type doping, and the
bottom rows (In, Zn, Sc, and Ga) are for n-type doping. The doping efficiency is only one predictor in
electronic transport; for example, while Ag and Au have much lower doping efficiencies than n-type

dopants In and Sc, the former dopants are more successful at increasing the carrier concentration due to
the low energy defects they form and the native p-type nature of Hg2GeTe4.

5



5. Au-doped SEM & XRD
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Figure S3: Trace amounts of impurity phases (GeTe, HgTe, Te, AuTe2) are found via SEM/EDS and pin
the sample in chemical potential space to a chemical invariant point. The main matrix phase (light grey) is
Hg2GeTe4. Overall sample homogeneity is excellent, evidenced by XRD.
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6. Ag-doped SEM & XRD
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Figure S4: Ag doping generates good quality samples and subtle shifts in the stoichiometry produce different
native impurity phases as well an unreported quaternary phase Hg2GeTe4Ag0.07. The main matrix phase
(light grey) is Hg2GeTe4.
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7. Cu-doped SEM & XRD
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Figure S5: The SEM and XRD for Cu-doped samples show very homogeneous samples with excellent density
(negligible porosity in SEM) and minimal trace impurity phases. The main matrix phase (light grey) is
Hg2GeTe4.
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8. Zn, In, Sc-doped samples SEM & XRD (main text samples; transport in Figure 6)
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Figure S6: Samples doped with Sc, In, and Zn that are featured in the main text (Figure 6). The main
matrix phase (light grey) is Hg2GeTe4.
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9. Ga, Zn, Sc-doped samples (not main text) SEM & XRD
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Figure S7: These samples are not included in the main text because it is likely that they contain ex-
cess amounts of HgTe that influences transport due to its very strong electron mobility (Figure S11).
Hg1.90GeTe4Ga0.05 does not fall under this category and is ommitted from the main text for clarity. Small
peaks in the XRD patterns at 24◦ denote the presence of HgTe, which is reflected in the SEM images as
well (white spots are HgTe). Transport data for these samples are shown in Figure S10 and S9. The main
matrix phase (light grey) is Hg2GeTe4.
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10. Cu-doping electronic transport
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Figure S8: Cu is largely ineffective as an extrinsic dopant in Hg2GeTe4.
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11. Ga-doping electronic transport
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Figure S9: Under Hg-poor conditions as seen here, Ga-doping generates p-type electronic transport. The
Hall mobility is quite low and is likely limited by ionized impurity scattering.
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12. Bipolar samples: Sc, Ga, Zn
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Figure S10: Bipolar data for samples doped with Sc, Ga, and Zn. Not all samples doped with these elements
were bipolar, as discussed in main manuscript.
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14. HgTe Hall Transport

Figure S11: HgTe has very high intrinsic mobility and low resistivity. The presence of this binary compound
is required by phase boundary mapping of Hg2GeTe4 under Hg-rich conditions, but too much of it can lead
to a false positive of n-type results.
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15. Defect Diagrams with band-edge ‘defects’
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Figure S12: Calculated formation energies of native point defects as well as the band-edge ‘defects’ as
functions of Fermi levels in Hg2GeTe4. The virtual ‘hole defect’ is shown by the dashed red line. The
virtual ‘electron defect’ has high formation energy (1.06 eV at VBM) and does not appear in this diagram.
With such visualization, it is demonstrated that doped Hg2GeTe4 is a defect-dominant system where the
equilibrium Fermi energy is largely determined by low energy defects.
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